Current Search: CONOE Microwave Radiometer -- Non-linearity -- MWR -- Aquarius (x)
-
-
Title
-
CONAE MicroWave Radiometer (MWR) Counts to Brightness Temperature Algorithm.
-
Creator
-
Ghazi, Zoubair, Jones, W Linwood, Wei, Lei, Mikhael, Wasfy, Wu, Thomas, Junek, William, Piepmeier, Jeffrey, University of Central Florida
-
Abstract / Description
-
This dissertation concerns the development of the MicroWave Radiometer (MWR) brightness temperature (Tb) algorithm and the associated algorithm validation using on-orbit MWR Tb measurements. This research is sponsored by the NASA Earth Sciences Aquarius Mission, a joint international science mission, between NASA and the Argentine Space Agency (Comision Nacional de Actividades Espaciales, CONAE). The MWR is a CONAE developed passive microwave instrument operating at 23.8 GHz (K-band) H-pol...
Show moreThis dissertation concerns the development of the MicroWave Radiometer (MWR) brightness temperature (Tb) algorithm and the associated algorithm validation using on-orbit MWR Tb measurements. This research is sponsored by the NASA Earth Sciences Aquarius Mission, a joint international science mission, between NASA and the Argentine Space Agency (Comision Nacional de Actividades Espaciales, CONAE). The MWR is a CONAE developed passive microwave instrument operating at 23.8 GHz (K-band) H-pol and 36.5 GHz (Ka-band) H- (&) V-pol designed to complement the Aquarius L-band radiometer/scatterometer, which is the prime sensor for measuring sea surface salinity (SSS). MWR measures the Earth's brightness temperature and retrieves simultaneous, spatially collocated, environmental measurements (surface wind speed, rain rate, water vapor, and sea ice concentration) to assist in the measurement of SSS.This dissertation research addressed several areas including development of: 1) a signal processing procedure for determining and correcting radiometer system non-linearity; 2) an empirical method to retrieve switch matrix loss coefficients during thermal-vacuum (T/V) radiometric calibration test; and 3) an antenna pattern correction (APC) algorithm using Inter-satellite radiometric cross-calibration of MWR with the WindSat satellite radiometer. The validation of the MWR counts-to-Tb algorithm was performed using two years of on-orbit data, which included special deep space calibration measurements and routine clear sky ocean/land measurements.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005496, ucf:50366
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005496