Current Search: Chloroplast genetic engineering (x)
View All Items
- Title
- EXPRESSION OF HETEROLOGOUS PROTEINS IN TRANSGENIC TOBACCO CHLOROPLASTS TO PRODUCE A BIOPHARMACEUTICAL AND BIOPOLYMER.
- Creator
-
Devine, Andrew, Daniell, Henry, University of Central Florida
- Abstract / Description
-
The chloroplast has been demonstrated to be an ideal compartment to accumulate certain proteins or their biosynthetic products that would be harmful if they were accumulated in the cytoplasm. Hyper-expression of foreign proteins in chloroplast transgenics has accumulated up to 46% total soluble protein, this is possible due to the ~100 chloroplast genomes per chloroplast and ~100 chloroplasts per cell which can therefore, contain up to 10,000 copies of the transgene. Maternal gene inheritance...
Show moreThe chloroplast has been demonstrated to be an ideal compartment to accumulate certain proteins or their biosynthetic products that would be harmful if they were accumulated in the cytoplasm. Hyper-expression of foreign proteins in chloroplast transgenics has accumulated up to 46% total soluble protein, this is possible due to the ~100 chloroplast genomes per chloroplast and ~100 chloroplasts per cell which can therefore, contain up to 10,000 copies of the transgene. Maternal gene inheritance of plastids in most crop plants results in natural gene containment. Chloroplast transformation also eliminates positional effects that are frequently observed with nuclear transformation and no gene silencing has been observed so far at the level of transcription or translation. Consequently, independent chloroplast transgenic lines have very similar levels of foreign gene expression and there is no need to screen hundreds of transgenic events. The chloroplast genome has also been used in molecular farming to express human therapeutic proteins, vaccines for human or animal use and biomaterials. In this study we have produced a Nicotiana tabacum cv. petit Havana chloroplast transgenic line that expresses a cholera toxin B subunit (from Vibrio Cholerae)-human proinsulin (a,b and c chain) fusion protein, designated CTB-Pris. The pLD-PW vector contains the CTB-Pris gene cloned into the universal chloroplast transformation vector pLD-ctv in which the 16S rRNA promoter drives the aadA gene selectable marker, which confers resistance to spectinomycin; the psbA 5' untranslated region (UTR) which enhances translation of CTB-Pris in the presence of light and the psbA 3'UTR confers transcript stability. The trnI and trnA homologous flanking sequences facilitated site-specific integration of transgenes into the tobacco chloroplast genome. Site-specific integration was demonstrated by PCR and Southern blot analysis with probes for CTB-Pris. Western Blot analysis has demonstrated the presence of abundant CTB-Pris in transgenic plants with both CTB polyclonal and proinsulin monoclonal antibodies. Southern blot analysis has also confirmed that homoplasmy had been achieved in the T0 generation. The expression levels for CTB-Proinsulin varied between 270ìg/100mg to 364.8ìg/100mg of plant tissue which equates to ~30% total soluble protein. In the second study the E. coli ubiC gene that codes for chorismate pyruvate-lyase (CPL) was integrated in the tobacco chloroplast genome under the control of the light-regulated psbA 5' untranslated region. CPL catalyzes the direct conversion of chorismate an important branch point intermediate in the shikimate pathway that is exclusively synthesized in plastids to pHBA and pyruvate. pHBA is the major monomer in liquid crystal polymers (LCPs). These thermotropic polyesters have excellent properties, including high strength/stiffness, low melt viscosity, property retention at elevated temperatures, environmental resistance and low gas permeability. The leaf content of pHBA glucose conjugates in fully mature T1 plants exposed to continuous light (total pooled material) varied between 13-18% DW, while the oldest leaves had levels as high as 26.5% DW. The highest CPL enzyme activity observed in total leaf material was 50,783 pkat/mg of protein, which is equivalent to ~35% of the total soluble protein. Animal studies in the Daniell lab, suggest that the CTB-Proinsulin producing plants suppress insulitis and clinical symptoms of diabetes in NOD mice. These observations demonstrate the versatility of chloroplast gene expression for production of biopharmaceuticals and biopolymers.
Show less - Date Issued
- 2006
- Identifier
- CFE0001056, ucf:46794
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001056
- Title
- EXPRESSION OF GAL/GALNAC LECTIN OF ENTAMOEBA HISTOLYTICA IN TRANSGENIC CHLOROPLASTS TO DEVELOP A VACCINE FOR AMEBIASIS.
- Creator
-
Chebolu, Seethamahalakshmi, Daniell, Henry, University of Central Florida
- Abstract / Description
-
Amebiasis, also defined as invasive intestinal and extra intestinal amebiasis, is caused by Entameoba histolytica, an invasive protozoan parasite. World Health Organization (WHO) has reported that approximately 50 million people are infected each year causing an estimated 40 to 100 thousand deaths annually. Entameoba histolytica ranks only second to malaria as a protozoan cause of death. Amebiasis occurs world wide but people living in Central and South America, Africa and Asia are the...
Show moreAmebiasis, also defined as invasive intestinal and extra intestinal amebiasis, is caused by Entameoba histolytica, an invasive protozoan parasite. World Health Organization (WHO) has reported that approximately 50 million people are infected each year causing an estimated 40 to 100 thousand deaths annually. Entameoba histolytica ranks only second to malaria as a protozoan cause of death. Amebiasis occurs world wide but people living in Central and South America, Africa and Asia are the majority to suffer from morbidity and mortality. The enteric parasite has no zoonotic reservoirs and insect vectors for its transmission and infects humans and non-human primates. Therefore, anti-amebic vaccine could completely eradicate the disease. Entamoeba histolytica invades tissue and causes the disease in series of events. The disease is caused when the cyst form of the parasite is ingested with contaminated food or water. After excysting in the small intestine to form the trophozoite, the parasite adheres to the colonic mucus and epithelial cells through interaction of Gal/GalNAc lectin, an amebic surface adhesin with the host glycoconjugates. The parasite then secrets the proteolytic enzymes that disrupt the intestinal mucus and epithelial barrier facilitating tissue penetration. The trophozoite then kills the host epithelial and immune cells. Also, it resists the host's immune response causing the prolonged infection called the invasive amebiasis and causes colon or liver abscess. The symptoms include gradual onset of abdominal pain, diarrhea and bloody stools. Also, it can form cysts that are excreted with stools to start new cycle. The parasite recognition of the host glycoconjugates plays an important role in the pathogenesis. Therefore, the Gal/GalNAc lectin could be a possible vaccine candidate. The Gal/GalNAc lectin is composed of a 260-kDa heterodimer of disulfide-linked heavy (170 kDa) and light (35 kDa) subunits, which is non-covalently associated with an intermediate sub-unit of 150 kDa. The only recognized Carbohydrate recognition domain (CRD) was found in the heavy sub-unit. The CRD of the lectin is the potential target for colonization blocking vaccines and drugs. Preliminary studies have shown that the recombinant fragments of cysteine-rich region of LecA (lectin) containing the CRD (carbohydrate recognition domain) of the GalNAc lectin conferred protection against amebiasis. Therefore, production of LecA in plants using chloroplast genetic engineering would result in low cost vaccine because of high expression levels of vaccine antigens, and elimination of the cold-chain (low temperature, storage & transportation), hospitals and health professionals for their delivery. The LecA protein was expressed in transgenic chloroplasts of Nicotiana tabacum var. Petit havana by transforming the chloroplast genome using the LecA gene (1755 bp) by homologous recombination. The pLD-CtV has trnI and trnA genes that are used as flanking sequences for homologous recombination and the constitutive 16s rRNA promoter to regulate transcription. The aadA gene conferring spectinomycin resistance has been used for selection and gene10 regulatory sequence from T7 bacteriophage to enhance translation. The chloroplast integration of LecA was confirmed by PCR and Southern blot analysis. The expression of LecA protein in transgenic chloroplasts was analyzed by immunoblot analysis using anti-LecA antibodies. Maximum expression levels of LecA up to 6.3 % of the total soluble protein were observed in the old leaves. The evaluation of the immune response in animal model is underway. This is the first report of expression of LecA in a plant system.
Show less - Date Issued
- 2005
- Identifier
- CFE0000511, ucf:46467
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000511
- Title
- MULTIGENE METABOLIC ENGINEERING VIA THE CHLOROPLAST GENOME.
- Creator
-
Ruiz, Oscar Nemesio, Daniell PD, Henry h., University of Central Florida
- Abstract / Description
-
The vast majority of valuable agronomic traits are encoded polygenetically. Chloroplast genetic engineering offers an alternate approach to multigene engineering by allowing the insertion of entire pathways in a single transformation event, while being an environmentally friendly approach.Stable integration into the chloroplast genome and transcription of the phaA gene coding for b-ketothiolase was confirmed by Southern and northern blots. Coomassie-stained gel and western blots confirmed...
Show moreThe vast majority of valuable agronomic traits are encoded polygenetically. Chloroplast genetic engineering offers an alternate approach to multigene engineering by allowing the insertion of entire pathways in a single transformation event, while being an environmentally friendly approach.Stable integration into the chloroplast genome and transcription of the phaA gene coding for b-ketothiolase was confirmed by Southern and northern blots. Coomassie-stained gel and western blots confirmed hyperexpression of b-ketothiolase in leaves and anthers, with high enzyme activity. The transgenic lines were normal except for the male sterile phenotype, lacking pollen. Scanning electron microscopy revealed a collapsed morphology of the pollen grains. Transgenic lines followed an accelerated anther developmental pattern, affecting their development and maturation, resulting in aberrant tissue patterns. Abnormal thickening of the outer wall, enlarged endothecium and vacuolation, decreased the inner space of the locules, affecting pollen grain and resulted in the irregular shape and collapsed phenotype. Reversibility of the male sterility phenotype was achieved by exposing the plants to continuous illumination, producing viable pollen and copious amounts of seeds. This is the first report of engineered cytoplasmic male sterility and offers a new tool for transgene containment for both nuclear and organelle genomes.Detailed characterization of transcriptional, posttranscriptional and translational processes of heterologous operons expressed via the chloroplast genome is reported here. Northern blot analyses performed on chloroplast transgenic lines harboring seven different heterologous operons, revealed that in most cases, only polycistronic mRNA was produced or polycistrons were the most abundant form and that they were not processed into monocistrons. Despite such lack of processing, abundant foreign protein accumulation was detected in these transgenic lines. Interestingly, a stable secondary structure formed from a heterologous bacterial intergenic sequence was recognized and efficiently processed, indicating that the chloroplast posttranscriptional machinery can indeed recognize sequences that are not of chloroplast origin, retaining its prokaryotic ancestral features. Processed and unprocessed heterologous polycistrons were quite stable even in the absence of 3'UTRs and were efficiently translated. Unlike native 5' UTRs, heterologous secondary structures or 5'UTRs showed efficient translational enhancement independent of any cellular control. Finally, we observed abundant read-through transcription in the presence of chloroplast 3'UTRs. Such read-through transcripts were efficiently processed at introns present within native operons. Addressing questions about polycistrons, as well as the sequences required for their processing and transcript stability are essential for future approaches in metabolic engineering.Finally, we have shown phytoremediation of mercury by engineering the mer operon via the chloroplast genome under the regulation of chloroplast native and heterologous 5'UTRs. These transgenenic plants hyperexpress were able to translate MerA and MerB enzymes to levels detectable by coomassie stained gel. The knowledge acquired from these studies offer guidelines for engineering multigene pathways via the chloroplast genome.
Show less - Date Issued
- 2004
- Identifier
- CFE0000115, ucf:46206
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000115
- Title
- EXPRESSION AND CHARACTERIZATION OF ANTIMICROBIAL PEPTIDES RETROCYCLIN-101 AND PROTEGRIN-1 IN CHLOROPLASTS TO CONTROL VIRAL AND BACTERIAL INFECTIONS.
- Creator
-
Li, Baichuan, Daniell, Henry, University of Central Florida
- Abstract / Description
-
Retrocyclin-101 (RC101) and Protegrin-1 (PG1) are two important antimicrobial peptides that can be used as therapeutic agents against bacterial and/or viral infections, especially those caused by the HIV-1 or sexually-transmitted bacteria. Because of their antimicrobial activity and complex secondary structures, they have not yet been produced in microbial systems and their chemical synthesis is prohibitively expensive. Therefore, we created chloroplast transformation vectors with the RC101...
Show moreRetrocyclin-101 (RC101) and Protegrin-1 (PG1) are two important antimicrobial peptides that can be used as therapeutic agents against bacterial and/or viral infections, especially those caused by the HIV-1 or sexually-transmitted bacteria. Because of their antimicrobial activity and complex secondary structures, they have not yet been produced in microbial systems and their chemical synthesis is prohibitively expensive. Therefore, we created chloroplast transformation vectors with the RC101 or PG1 coding sequence, fused with GFP to confer stability, furin or Factor Xa cleavage site to liberate the mature peptide from their fusion proteins and a His-tag to aid in their purification. Stable integration of RC-101 into the tobacco chloroplast genome and homoplasmy were confirmed by Southern blots. RC-101 and PG1 accumulated up to 32-38% and 17~26% of the total soluble protein. Both RC-101 and PG1 were cleaved from GFP by corresponding proteases in vitro and Factor Xa like protease activity was observed within chloroplasts. Confocal microscopy studies showed location of GFP fluorescence within chloroplasts. Organic extraction resulted in 10.6 fold higher yield of RC 101 than purification by affinity chromatography using His-tag. In planta bioassays with Erwinia carotovora confirmed the antibacterial activity of RC101 and PG1 expressed in chloroplasts. RC101 transplastomic plants were resistant to TMV infections, confirming antiviral activity. Because RC101 and PG1 have not yet been produced in other cell culture or microbial systems, chloroplasts can be used as bioreactors for producing these proteins. Adequate yield of purified antimicrobial peptides from transplastomic plants should facilitate further pre-clinical studies.
Show less - Date Issued
- 2010
- Identifier
- CFE0003199, ucf:48571
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003199