Current Search: Climate modeling (x)
View All Items
- Title
- THE RESPONSE OF A GENERAL CIRCULATION CLIMATE MODEL TOHIGH LATITUDE FRESHWATER FORCING IN THE ATLANTIC BASINWITH RESPECT TOTROPICAL CYCLONE-LIKE VORTICES.
- Creator
-
Paulis, Victor, Clarke, Thomas, University of Central Florida
- Abstract / Description
-
The current cycle of climate change along with increases in hurricane activity, changing precipitation patterns, glacial melt, and other extremes of weather has led to interest and research into the global correlation or teleconnection between these events. Examination of historical climate records, proxies and observations is leading to formulation of hypotheses of climate dynamics with modeling and simulation being used to test these hypotheses as well as making projections. Ocean currents...
Show moreThe current cycle of climate change along with increases in hurricane activity, changing precipitation patterns, glacial melt, and other extremes of weather has led to interest and research into the global correlation or teleconnection between these events. Examination of historical climate records, proxies and observations is leading to formulation of hypotheses of climate dynamics with modeling and simulation being used to test these hypotheses as well as making projections. Ocean currents are believed to be an important factor in climate change with thermohaline circulation (THC) fluctuations being implicated in past cycles of abrupt change. Freshwater water discharge into high-latitude oceans attributed to changing precipitation patterns and glacial melt, particularly the North Atlantic, has also been associated with historical abrupt climate changes and is believed to have inhibited or shut down the THC overturning mechanism by diluting saline surface waters transported from the tropics. Here we analyze outputs of general circulation model (GCM) simulations parameterized by different levels of freshwater flux (no flux (control), 0.1 Sverdrup (Sv) and 1.0 Sv) with respect to tropical cyclone-like vortices (TCLVs) to determine any trend in simulated tropical storm frequency, duration, and location relative to flux level, as well as considering the applicability of using GCMs for tropical weather research. Increasing flux levels produced fewer storms and storm days, increased storm duration, a southerly and westerly shift (more pronounced for the 0.1 Sv level) in geographic distribution and increased activity near the African coast (more pronounced for the 1.0 Sv level). Storm intensities and tracks were not realistic compared to observational (real-life) values and is attributed to the GCM resolution not being fine enough to realistically simulate storm (microscale) dynamics.
Show less - Date Issued
- 2007
- Identifier
- CFE0001810, ucf:47339
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001810
- Title
- CLIMATE MODELING, OUTGOING LONGWAVE RADIATION, AND TROPICAL CYCLONE FORECASTING.
- Creator
-
Rechtman, Thomas, Mohapatra, Ram N., University of Central Florida
- Abstract / Description
-
Climate modeling and tropical cyclone forecasting are two significant issues that are continuously being improved upon for more accurate weather forecasting and preparedness. In this thesis, we have studied three climate models and formulated a new model with a view to determine the outgoing longwave radiation (OLR) budget at the top of the atmosphere (TOA) as observed by the National Oceanic and Atmospheric Administration's (NOAA) satellite based Advanced Very High Resolution Radiometer ...
Show moreClimate modeling and tropical cyclone forecasting are two significant issues that are continuously being improved upon for more accurate weather forecasting and preparedness. In this thesis, we have studied three climate models and formulated a new model with a view to determine the outgoing longwave radiation (OLR) budget at the top of the atmosphere (TOA) as observed by the National Oceanic and Atmospheric Administration's (NOAA) satellite based Advanced Very High Resolution Radiometer (AVHRR). In 2006, Karnauskas proposed the African meridional OLR as an Atlantic hurricane predictor, the relation was further proven in 2016 by Karnauskas and Li. Here we have considered a similar study for all other tropical cyclone basins.
Show less - Date Issued
- 2018
- Identifier
- CFH2000403, ucf:45775
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH2000403
- Title
- ASSESSING AND MODELING MANGROVE FOREST DYNAMICS ALONG THE TEMPERATE-SUBTROPICAL ECOTONE IN EASTERN FLORIDA.
- Creator
-
Leitholf, Susan, Weishampel, John, University of Central Florida
- Abstract / Description
-
Mangrove ecosystems are among the world's most endangered biomes; nearly one-half of the overall coverage is threatened by human activity, invasive species, and global climate change. Mangroves play an important ecosystem role through detrital production and by providing: fisheries and wildlife nursery habitat, shoreline protection, a sink for nutrients, carbon, and sediment. In addition to human activity, the Florida mangroves (Avicennia germinans, Laguncularia racemosa, and Rhizophora...
Show moreMangrove ecosystems are among the world's most endangered biomes; nearly one-half of the overall coverage is threatened by human activity, invasive species, and global climate change. Mangroves play an important ecosystem role through detrital production and by providing: fisheries and wildlife nursery habitat, shoreline protection, a sink for nutrients, carbon, and sediment. In addition to human activity, the Florida mangroves (Avicennia germinans, Laguncularia racemosa, and Rhizophora mangle) are being threatened by the invasive Brazilian pepper (Schinus terebinthifolius). This study was performed along a 261 km stretch of the east coast of Florida from Sebastian Inlet to the northern extent of mangroves, near St. Augustine. It entailed two parts. The first examined the phenology and leafing rates of the four species and attempted to find if there was a relationship between growth and latitude or temperature. Although a correlation between peaks in temperature and phenology was observed for all species, no leafing pattern could be discerned. In terms of mangrove growth for branch diameter, a logarithmic model (y=a + blog [Initial diameter]) best fitted the data for R. mangle and L. racemosa but neither latitude nor temperature appeared to be important. However, S. terebinthifolius' and A. germinans's branch diameter growth were best represented by a logarithmic model (y=a + blog [Initial diameter] + clog x2) that incorporated temperature and latitudinal respectively. In the second part, a simulation model was developed to focus on understanding the relationships between establishment and competition among the three mangrove species and the invading S. terebinthifolius. This model was run under various invasion and/or climate change scenarios to determine possible outcomes under global climate change with or without the presence of S. terebinthifolius. Conclusions were drawn that under all scenarios of invasion, other than sea level rise as part of global climate change, S. terebinthifolius would dominate the landscape if allowed to invade and establish in areas in which it is not currently present although the amount of this response is dependent on the S. terebinthifolius response curves.
Show less - Date Issued
- 2008
- Identifier
- CFE0002187, ucf:47912
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002187
- Title
- Groundwater modeling for assessing the impacts of natural hazards in east-central Florida.
- Creator
-
Xiao, Han, Wang, Dingbao, Nam, Boo Hyun, Medeiros, Stephen, Mayo, Talea, Hall, Carlton, University of Central Florida
- Abstract / Description
-
In coastal east-central Florida (ECF) , the low-lying coastal alluvial plains and barrier islands have a high risk of being inundated by seawater due to climate change effects such as sea-level rise, changing rainfall patterns, and intensified storm surge from hurricanes., This will produce saltwater intrusion into the coastal aquifer from infiltration of overtopping saltwater. In the inland ECF region, sinkhole occurrence is recognized as the primary geologic hazard causing massive financial...
Show moreIn coastal east-central Florida (ECF) , the low-lying coastal alluvial plains and barrier islands have a high risk of being inundated by seawater due to climate change effects such as sea-level rise, changing rainfall patterns, and intensified storm surge from hurricanes., This will produce saltwater intrusion into the coastal aquifer from infiltration of overtopping saltwater. In the inland ECF region, sinkhole occurrence is recognized as the primary geologic hazard causing massive financial losses to society in the past several decades. The objectives of this dissertation are to: (1) evaluate the impacts of sea-level rise and intensified storm surge on the extent of saltwater intrusion into the coastal ECF region; (2) assess the risk level of sinkhole occurrence in the inland ECF region. In this dissertation, numerical modeling methods are used to achieve these objectives. Several three-dimensional groundwater flow and salinity transport models, focused on the coastal ECF region, are developed and calibrated to simulate impacts of sea-level rise and storm surge based on various sea-level rise scenarios. A storm surge model is developed to quantify the future extent of saltwater intrusion. Several three-dimensional groundwater flow models, focused on the inland ECF region, are developed and calibrated to simulate the spatial variation of groundwater recharge rate for analyzing the risk level of sinkhole occurrence in the geotypical central Florida karst terrains. Results indicate that sea-level rise and storm surge play a dominant role in causing saltwater intrusion, and the risk of sinkhole occurrence increases linearly with an increase in recharge rate while the timing of sinkhole occurrence is highly related to the temporal variation of the difference of groundwater level between confined and unconfined aquifers. The outcome will contribute to ongoing research focused on forecasting the impacts of climate change on the risk level of natural hazards in ECF region.
Show less - Date Issued
- 2017
- Identifier
- CFE0007298, ucf:52160
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007298
- Title
- Response of Streamflow and Sediment Loading in the Apalachicola River, Florida to Climate and Land Use Land Cover Change.
- Creator
-
Hovenga, Paige, Medeiros, Stephen, Wang, Dingbao, Kibler, Kelly, University of Central Florida
- Abstract / Description
-
Located in Florida's panhandle, the Apalachicola River is the southernmost reach of the Apalachicola-Chattahoochee-Flint (ACF) River basin. Streamflow and sediment drains to Apalachicola Bay in the Northern Gulf of Mexico, directly influencing the ecology of the region, in particular seagrass and oyster production. The objective of this study is to evaluate the response of runoff and sediment loading in the Apalachicola River under projected climate change scenarios and land use / land cover ...
Show moreLocated in Florida's panhandle, the Apalachicola River is the southernmost reach of the Apalachicola-Chattahoochee-Flint (ACF) River basin. Streamflow and sediment drains to Apalachicola Bay in the Northern Gulf of Mexico, directly influencing the ecology of the region, in particular seagrass and oyster production. The objective of this study is to evaluate the response of runoff and sediment loading in the Apalachicola River under projected climate change scenarios and land use / land cover (LULC) change. A hydrologic model using the Soil Water Assessment Tool (SWAT) was developed for the Apalachicola region to simulate daily discharge and sediment load under present (circa 2000) and future conditions (circa 2100) to understand how the system responds over seasonal and event time frames to changes in climate, LULC, and coupled climate / LULC. These physically-based models incorporate a digital elevation model (DEM), LULC, soil maps, climate data, and management controls. Long Ashton Research Station-Weather Generator (LARS-WG) was used to create downscaled stochastic temperature and precipitation inputs from three Global Climate Models (GCM), each under Intergovernmental Panel on Climate Change (IPCC) carbon emission scenarios for A1B, A2, and B1. Projected 2100 LULC data provided by the United States Geological Survey (USGS) EROS Center was incorporated for each corresponding IPCC scenario. Results indicate climate change may induce seasonal shifts to both runoff and sediment loading, acting to extend periods of high flow and minimum sediment loadings or altering the time at which these events occur completely. Changes in LULC showed minimal effects on flow while more sediment loading was associated with increased agriculture and urban areas and decreased forested regions. A nonlinear response for both streamflow and sediment loading was observed by coupling climate and LULC change into the hydrologic model, indicating changes in one may exacerbate or dampen the effects of the other. Peak discharge and sediment loading associated with extreme events showed both increases and decreases in the future, with variability dependent on the GCM used. Similar behavior was observed in the total discharge resulting from extreme events and increased total sediment load was frequently predicted for the A2 and A1B scenarios for simulations involving changes in climate only, LULC only, and both climate and LULC. Output from the individual GCMs predicted differing responses of streamflow and sediment loading to changes in climate on both the seasonal and event scale. Additional region-specific research is needed to better optimize the GCM ensemble and eliminate those that provide erroneous output. In addition, future assessment of the downscaling approach to capture extreme events is required. Findings from this study can be used to further understand climate and LULC implications to the Apalachicola Bay and surrounding region as well as similar fluvial estuaries while providing tools to better guide management and mitigation practices.
Show less - Date Issued
- 2015
- Identifier
- CFE0006326, ucf:51543
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006326
- Title
- IDENTIFICATION OF SPATIOTEMPORAL NUTRIENT PATTERNS AND ASSOCIATED ECOHYDROLOGICAL TRENDS IN THE TAMPA BAY COASTAL REGION.
- Creator
-
Wimberly, Brent, Chang, Ni-Bin, University of Central Florida
- Abstract / Description
-
The comprehensive assessment techniques for monitoring of water quality of a coastal bay can be diversified via an extensive investigation of the spatiotemporal nutrient patterns and the associated eco-hydrological trends in a coastal urban region. With this work, it is intended to thoroughly investigate the spatiotemporal nutrient patterns and associated eco-hydrological trends via a two part inquiry of the watershed and its adjacent coastal bay. The findings show that the onset of drought...
Show moreThe comprehensive assessment techniques for monitoring of water quality of a coastal bay can be diversified via an extensive investigation of the spatiotemporal nutrient patterns and the associated eco-hydrological trends in a coastal urban region. With this work, it is intended to thoroughly investigate the spatiotemporal nutrient patterns and associated eco-hydrological trends via a two part inquiry of the watershed and its adjacent coastal bay. The findings show that the onset of drought lags the crest of the evapotranspiration and precipitation curve during each year of drought. During the transition year, ET and precipitation appears to start to shift back into the analogous temporal pattern as the 2005 wet year. NDVI shows a flat receding tail for the September crest in 2005 due to the hurricane impact signifying that the hurricane event in October dampening the severity of the winter dry season in which alludes to relative system memory. The k-means model with 8 clusters is the optimal choice, in which cluster 2 at Lower Tampa Bay had the minimum values of total nitrogen (TN) concentrations, chlorophyll a (Chl-a) concentrations, and ocean color values in every season as well as the minimum concentration of total phosphorus (TP) in three consecutive seasons in 2008. Cluster 5, located in Middle Tampa Bay, displayed elevated TN concentrations, ocean color values, and Chl-a concentrations, suggesting that high colored dissolved organic matter values are linked with some nutrient sources. The data presented by the gravity modeling analysis indicate that the Alafia River Basin is the major contributor of nutrients in terms of both TP and TN values in all seasons. Such ecohydrological evaluation can be applied for supporting the LULC management of climatic vulnerable regions as well as further enrich the comprehensive assessment techniques for estimating and examining the multi-temporal impacts and dynamic influence of urban land use and land cover. Improvements for environmental monitoring and assessment were achieved to advance our understanding of sea-land interactions and nutrient cycling in a coastal bay.
Show less - Date Issued
- 2012
- Identifier
- CFH0004132, ucf:44878
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004132