Current Search: Coherent Detection (x)
View All Items
- Title
- EFFECTS OF POLARIZATION AND COHERENCE ON THE PROPAGATION AND THE DETECTION OF STOCHASTIC ELECTROMAGNETIC BEAMS.
- Creator
-
Salem, Mohamed, Rolland, Jannick, University of Central Florida
- Abstract / Description
-
Most of the physically realizable optical sources are radiating in a random manner given the random nature of the radiation of a large number of atoms that constitute the source. Besides, a lot of natural and synthetic materials are fluctuating randomly. Hence, the optical fields that one encounters, in most of the applications are fluctuating and must be treated using random or stochastic functions. Within the framework of the scalar-coherence theory, one can describe changes of the...
Show moreMost of the physically realizable optical sources are radiating in a random manner given the random nature of the radiation of a large number of atoms that constitute the source. Besides, a lot of natural and synthetic materials are fluctuating randomly. Hence, the optical fields that one encounters, in most of the applications are fluctuating and must be treated using random or stochastic functions. Within the framework of the scalar-coherence theory, one can describe changes of the properties of any stochastic field such as the spectral density and the spectral degree of coherence on propagation in any linear medium, deterministic or random. One of the frequently encountered random media is the atmospheric turbulence, where the fluctuating refractive index of such medium severely degrades any signal propagating through it; especially it causes intensity fades of the signal. The usage of stochastic beams at the transmitter instead of deterministic ones has been suggested sometime ago to suppress the severe effects of intensity fluctuations caused by the atmospheric turbulence. In this dissertation, we study the usage of partially coherent beams in long path propagation schemes through turbulent atmosphere such as one frequently encounters in remote sensing, in the use of communication systems, and in guiding. Also the used detection scheme at the receiver is important to quantify the received signal efficiently, hence we compare the performance of incoherent (direct) detection versus coherent (heterodyne) detection upon the use of either one of them at the receiver of the communication system of beams propagating in turbulent atmosphere and namely we evaluate the signal-to-noise-ratio (SNR) for each case. The scalar-coherence theory ignored the vector nature of stochastic fields, which should be taken into account for some applications such as the ones that depend on the change of the polarization of the field. Recently generalization for the scalar-coherence theory including the vector aspects of the stochastic beams has been formulated and it is well-known as the unified theory of coherence and polarization of stochastic beams. The use of the unified theory of coherence and polarization makes it possible to study both the coherence properties and the polarization properties of stochastic electromagnetic beams on propagation in any linear media. The central quantity in this theory is a 2 × 2 matrix that describes the statistical ensemble of any stochastic electromagnetic beam in the space-frequency domain or its Fourier transform in the space-time domain. In this dissertation we derive the conditions that the cross-spectral density matrix of a so-called planar, secondary, electromagnetic Gaussian Schell-model source has to satisfy in order to generate a beam propagating in vacuum. Also based on the unified-theory of coherence and polarization we investigate the subtle relationship between coherence and polarization under general circumstances. Besides we show the effects of turbulent atmosphere on the degree of polarization and the polarization state of a partially coherent electromagnetic beam, which propagates through it and we compare with the propagation in vacuum. The detection of the optical signals is important; hence it affects the fidelity of the communication system. In this dissertation we present a general analysis for the optical heterodyne detection of stochastic electromagnetic beams. We derive an expression for the SNR when two stochastic electromagnetic beams are mixed coherently on a detector surface in terms of the space-time domain representation of the beams, the beam coherence polarization matrices. We evaluate also the heterodyne efficiency of a heterodyne detection system for stochastic beams propagating in vacuum and we discuss the dependence of the heterodyne efficiency of the detection process on the changes in the beam parameters as the beam propagates in free space.
Show less - Date Issued
- 2007
- Identifier
- CFE0001932, ucf:47445
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001932
- Title
- DIGITAL SIGNAL PROCESSING TECHNIQUES FOR COHERENT OPTICAL COMMUNICATION.
- Creator
-
Goldfarb, Gilad, Li, Guifang, University of Central Florida
- Abstract / Description
-
Coherent detection with subsequent digital signal processing (DSP) is developed, analyzed theoretically and numerically and experimentally demonstrated in various fiber‐optic transmission scenarios. The use of DSP in conjunction with coherent detection unleashes the benefits of coherent detection which rely on the preservation of full information of the incoming field. These benefits include high receiver sensitivity, the ability to achieve high spectral‐efficiency and the use of...
Show moreCoherent detection with subsequent digital signal processing (DSP) is developed, analyzed theoretically and numerically and experimentally demonstrated in various fiber‐optic transmission scenarios. The use of DSP in conjunction with coherent detection unleashes the benefits of coherent detection which rely on the preservation of full information of the incoming field. These benefits include high receiver sensitivity, the ability to achieve high spectral‐efficiency and the use of advanced modulation formats. With the immense advancements in DSP speeds, many of the problems hindering the use of coherent detection in optical transmission systems have been eliminated. Most notably, DSP alleviates the need for hardware phase‐locking and polarization tracking, which can now be achieved in the digital domain. The complexity previously associated with coherent detection is hence significantly diminished and coherent detection is once again considered a feasible detection alternative. In this thesis, several aspects of coherent detection (with or without subsequent DSP) are addressed. Coherent detection is presented as a means to extend the dispersion limit of a duobinary signal using an analog decision‐directed phase‐lock loop. Analytical bit‐error ratio estimation for quadrature phase‐shift keying signals is derived. To validate the promise for high spectral efficiency, the orthogonal‐wavelength‐division multiplexing scheme is suggested. In this scheme the WDM channels are spaced at the symbol rate, thus achieving the spectral efficiency limit. Theory, simulation and experimental results demonstrate the feasibility of this approach. Infinite impulse response filtering is shown to be an efficient alternative to finite impulse response filtering for chromatic dispersion compensation. Theory, design considerations, simulation and experimental results relating to this topic are presented. Interaction between fiber dispersion and nonlinearity remains the last major challenge deterministic effects pose for long‐haul optical data transmission. Experimental results which demonstrate the possibility to digitally mitigate both dispersion and nonlinearity are presented. Impairment compensation is achieved using backward propagation by implementing the split‐step method. Efficient realizations of the dispersion compensation operator used in this implementation are considered. Infinite‐impulse response and wavelet‐based filtering are both investigated as a means to reduce the required computational load associated with signal backward‐propagation. Possible future research directions conclude this dissertation.
Show less - Date Issued
- 2008
- Identifier
- CFE0002384, ucf:47763
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002384
- Title
- HIGH-SPEED MODELOCKED SEMICONDUCTOR LASERS AND APPLICATIONS IN COHERENT PHOTONIC SYSTEMS.
- Creator
-
Lee, Wangkuen, Delfyett, Peter, University of Central Florida
- Abstract / Description
-
1.55-µm high-speed modelocked semiconductor lasers are theoretically and experimentally studied for various coherent photonic system applications. The modelocked semiconductor lasers (MSLs) are designed with high-speed (>5 GHz) external cavity configurations utilizing monolithic two-section curved semiconductor optical amplifiers. By exploiting the saturable absorber section of the monolithic device, passive or hybrid mode-locking techniques are used to generate short optical pulses with...
Show more1.55-µm high-speed modelocked semiconductor lasers are theoretically and experimentally studied for various coherent photonic system applications. The modelocked semiconductor lasers (MSLs) are designed with high-speed (>5 GHz) external cavity configurations utilizing monolithic two-section curved semiconductor optical amplifiers. By exploiting the saturable absorber section of the monolithic device, passive or hybrid mode-locking techniques are used to generate short optical pulses with broadband optical frequency combs. Laser frequency stability is improved by applying the Pound-Drever-Hall (PDH) frequency stabilization technique to the MSLs. The improved laser performance after the frequency stabilization (a frequency drifting of less than 350 MHz), is extensively studied with respect to the laser linewidth (~ 3 MHz), the relative intensity noise (RIN) (< -150 dB/Hz), as well as the modal RIN (~ 3 dB reduction). MSL to MSL, and tunable laser to MSL synchronization is demonstrated by using a dual-mode injection technique and a modulation sideband injection technique, respectively. Dynamic locking behavior and locking bandwidth are experimentally and theoretically studied. Stable laser synchronization between two MSLs is demonstrated with an injection seed power on the order of a few microwatt. Several coherent heterodyne detections based on the synchronized MSL systems are demonstrated for applications in microwave photonic links and ultra-dense wavelength division multiplexing (UD-WDM) system. In addition, efficient coherent homodyne balanced receivers based on synchronized MSLs are developed and demonstrated for a spectrally phase-encoded optical CDMA (SPE-OCDMA) system.
Show less - Date Issued
- 2007
- Identifier
- CFE0001703, ucf:47326
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001703
- Title
- WAVELENGTH-DIVISION-MULTIPLEXED TRANSMISSION USING SEMICONDUCTOR OPTICAL AMPLIFIERS AND ELECTRONIC IMPAIRMENT COMPENSATION.
- Creator
-
LI, XIAOXU, Li, Guifang, University of Central Florida
- Abstract / Description
-
Over the last decade, rapid growth of broadband services necessitated research aimed at increasing transmission capacity in fiber-optic communication systems. Wavelength division multiplexing (WDM) technology has been widely used in fiber-optic systems to fully utilize fiber transmission bandwidth. Among optical amplifiers for WDM transmission, semiconductor optical amplifier (SOA) is a promising candidate, thanks to its broad bandwidth, compact size, and low cost. In transmission systems...
Show moreOver the last decade, rapid growth of broadband services necessitated research aimed at increasing transmission capacity in fiber-optic communication systems. Wavelength division multiplexing (WDM) technology has been widely used in fiber-optic systems to fully utilize fiber transmission bandwidth. Among optical amplifiers for WDM transmission, semiconductor optical amplifier (SOA) is a promising candidate, thanks to its broad bandwidth, compact size, and low cost. In transmission systems using SOAs, due to their large noise figures, high signal launching powers are required to ensure reasonable optical signal-to-noise ratio of the received signals. Hence the SOAs are operated in the saturation region and the signals will suffer from SOA impairments including self-gain modulation, self-phase modulation, and inter channel crosstalk effects such as cross-gain modulation, cross-phase modulation, and four-wave mixing in WDM. One possibility to circumvent these nonlinear impairments is to use constant-intensity modulation format in the 1310 nm window where dispersion is also negligible. In this dissertation, differential phase-shift keying (DPSK) WDM transmission in the 1310 nm window using SOAs was first considered to increase the capacity of existing telecommunication network. A WDM transmission of 4 × 10 Gbit/s DPSK signals over 540 km standard single mode fiber (SSMF) using cascaded SOAs was demonstrated in a recirculating loop. In order to increase the transmission reach of such WDM systems, those SOA impairments must be compensated. To do so, an accurate model for quantum-dot (QD) SOA must be established. In this dissertation, the QD-SOA was modeled with the assumption of overall charge neutrality. Static gain was calculated. Optical modulation response and nonlinear phase noise were studied semi-analytically based on small-signal analysis. The quantitative studies show that an ultrafast gain recovery time of ~0.1 ps can be achieved when QD-SOAs are under high current injection, which leads to high saturation output power. However more nonlinear phase noise is induced when the QD-SOAs are used in the transmission systems operating at 10 Gbit/s or 40 Gbit/s. Electronic post-compensation for SOA impairments using coherent detection and digital signal processing (DSP) was investigated next in this dissertation. An on-off keying transmission over 100 km SSMF using three SOAs at 1.3 um were demonstrated experimentally with direct detection and SOA impairment compensation. The data pattern effect of the signal was compensated effectively. Both optimum launching power and Q-factor were improved by 8 dB. For advanced modulation formats involving phase modulation or in transmission windows with large dispersion, coherent detection must be used and fiber impairments in WDM systems need to be compensated as well. The proposed fiber impairment compensation is based on digital backward propagation. The corresponding DSP implementation was described and the required calculations as well as system latency were derived. Finally joint SOA and fiber impairment compensations were experimentally demonstrated for an amplitude-phase-shift keying transmission.
Show less - Date Issued
- 2009
- Identifier
- CFE0002932, ucf:47960
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002932