Current Search: Discrete-Event Simulation (x)
View All Items
- Title
- DEVELOPING AN OBJECT-ORIENTED APPROACH FOR OPERATIONS SIMULATION IN SPEEDES.
- Creator
-
Wasadikar, Amit, Rabelo, Luis, University of Central Florida
- Abstract / Description
-
Using simulation techniques, performance of any proposed system can be tested for different scenarios with a generated model. However, it is difficult to rapidly create simulation models that will accurately represent the complexity of the system. In recent years, Object-Oriented Discrete-Event Simulation has emerged as the potential technology to implement rapid simulation schemes. A number of software based on programming languages like C++ and Java are available for carrying out Object...
Show moreUsing simulation techniques, performance of any proposed system can be tested for different scenarios with a generated model. However, it is difficult to rapidly create simulation models that will accurately represent the complexity of the system. In recent years, Object-Oriented Discrete-Event Simulation has emerged as the potential technology to implement rapid simulation schemes. A number of software based on programming languages like C++ and Java are available for carrying out Object Oriented Discrete-Event Simulation. These software packages establish a general framework for simulation in computer programs, but need to be further customized for desired end-use applications. In this thesis, a generic simulation library is created for the distributed Synchronous Parallel Environment for Emulation and Discrete-Event Simulation (SPEEDES). This library offers classes to model the functionality of servers, processes, resources, transporters, and decisions. The library is expected to produce efficient simulation models in less time and with a lesser amount of coding. The class hierarchy is modeled using the Unified Modeling Language (UML). To test the library, the existing SPEEDES Space Shuttle Model is enhanced and recreated. This enhanced model is successfully validated against the original Arena model.
Show less - Date Issued
- 2005
- Identifier
- CFE0000332, ucf:46278
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000332
- Title
- A HYBRID SYSTEM DYNAMICS-DISCRETE EVENT SIMULATIONAPPROACH TO SIMULATING THE MANUFACTURING ENTERPRISE.
- Creator
-
Helal, Magdy, Rabelo, Luis, University of Central Florida
- Abstract / Description
-
With the advances in the information and computing technologies, the ways the manufacturing enterprise systems are being managed are changing. More integration and adoption of the system perspective push further towards a more flattened enterprise. This, in addition to the varying levels of aggregation and details and the presence of the continuous and discrete types of behavior, created serious challenges for the use of the existing simulation tools for simulating the modern manufacturing...
Show moreWith the advances in the information and computing technologies, the ways the manufacturing enterprise systems are being managed are changing. More integration and adoption of the system perspective push further towards a more flattened enterprise. This, in addition to the varying levels of aggregation and details and the presence of the continuous and discrete types of behavior, created serious challenges for the use of the existing simulation tools for simulating the modern manufacturing enterprise system. The commonly used discrete event simulation (DES) techniques face difficulties in modeling such integrated systems due to increased model complexity, the lack of data at the aggregate management levels, and the unsuitability of DES to model the financial sectors of the enterprise. System dynamics (SD) has been effective in providing the needs of top management levels but unsuccessful in offering the needed granularity at the detailed operational levels of the manufacturing system. On the other hand the existing hybrid continuous-discrete tools are based on certain assumptions that do not fit the requirements of the common decision making situations in the business systems. This research has identified a need for new simulation modeling approaches that responds to the changing business environments towards more integration and flattened enterprise systems. These tools should be able to develop comprehensive models that are inexpensive, scalable, and able to accommodate the continuous and discrete modes of behavior, the stochastic and deterministic natures of the various business units, and the detail complexity and dynamic complexity perspectives in decision making. The research proposes and develops a framework to combine and synchronize the SD and DES simulation paradigms to simulate the manufacturing enterprise system. The new approach can respond to the identified requirements in simulating the modern manufacturing enterprise systems. It is directed toward building comprehensive simulation models that can accommodate all management levels while explicitly recognizing the differences between them in terms of scope and frequency of decision making as well as the levels of details preferred and used at each level. This SDDES framework maintains the integrity of the two simulation paradigms and can use existing/legacy simulation models without requiring learning new simulation or computer programming skills. The new framework uses a modular structure by which the SD and DES models are treated as members of a comprehensive simulation. A new synchronization mechanism that that maintains the integrity of the two simulation paradigms and is not event-driven is utilized to coordinate the interactions between the simulation modules. It avoids having one simulation paradigm dominating the other. For communication and model management purposes the SDDES formalism provides a generic format to describe, specify, and document the simulation modules and the information sharing processes. The SDDES controller which is the communication manager, implements the synchronization mechanism and manages the simulation run ensuring correct exchange of data in terms of timeliness and format, between the modules. It also offers the user interface through which users interact with the simulation modules.
Show less - Date Issued
- 2008
- Identifier
- CFE0002264, ucf:47835
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002264
- Title
- A System Dynamics Approach on Sustainability Assessment of the United States Urban Commuter Transportation.
- Creator
-
Ercan, Tolga, Tatari, Omer, Oloufa, Amr, Eluru, Naveen, Xanthopoulos, Petros, University of Central Florida
- Abstract / Description
-
Transportation sector is one of the largest emission sources and is a cause for human health concern due to the high dependency on personal vehicle in the U.S. Transportation mode choice studies are currently limited to micro- and regional-level boundaries, lacking of presenting a complete picture of the issues, and the root causes associated with urban passenger transportation choices in the U.S. Hence, system dynamics modeling approach is utilized to capture complex causal relationships...
Show moreTransportation sector is one of the largest emission sources and is a cause for human health concern due to the high dependency on personal vehicle in the U.S. Transportation mode choice studies are currently limited to micro- and regional-level boundaries, lacking of presenting a complete picture of the issues, and the root causes associated with urban passenger transportation choices in the U.S. Hence, system dynamics modeling approach is utilized to capture complex causal relationships among the critical system parameters affecting alternative transportation mode choices in the U.S. as well as to identify possible policy areas to improve alternative transportation mode choice rates for future years up to 2050. Considering the high degree of uncertainties inherent to the problem, multivariate sensitivity analysis is utilized to explore the effectiveness of existing and possible policy implications in dynamic model in the terms of their potential to increase transit ridership and locating critical parameters that influences the most on mode choice and emission rates. Finally, the dissertation advances the current body of knowledge by integrating discrete event simulation (multinomial fractional split model) and system dynamics for hybrid urban commuter transportation simulation to test new scenarios such as autonomous vehicle (AV) adoption along with traditional policy scenarios such as limiting lane-mile increase on roadways and introducing carbon tax policy on vehicle owners. Overall, the developed simulation models clearly indicate the importance of urban structures to secure the future of alternative transportation modes in the U.S. as the prevailing policy practices fail to change system behavior. Thus, transportation system needs a paradigm shift to radically change current impacts and the market penetration of AVs can be one of the reforms to provoke this transition since it is expected to revolutionize mode choice, emission trends, and the built environment.
Show less - Date Issued
- 2019
- Identifier
- CFE0007626, ucf:52554
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007626
- Title
- AN INTERVAL BASED APPROACH TO MODEL INPUT UNCERTAINTY IN DISCRETE-EVENT SIMULATION.
- Creator
-
Batarseh, Ola, Wang, Yan, University of Central Florida
- Abstract / Description
-
The objective of this research is to increase the robustness of discrete-event simulation (DES) when input uncertainties associated models and parameters are present. Input uncertainties in simulation have different sources, including lack of data, conflicting information and beliefs, lack of introspection, measurement errors, and lack of information about dependency. A reliable solution is obtained from a simulation mechanism that accounts for these uncertainty components in simulation. An...
Show moreThe objective of this research is to increase the robustness of discrete-event simulation (DES) when input uncertainties associated models and parameters are present. Input uncertainties in simulation have different sources, including lack of data, conflicting information and beliefs, lack of introspection, measurement errors, and lack of information about dependency. A reliable solution is obtained from a simulation mechanism that accounts for these uncertainty components in simulation. An interval-based simulation (IBS) mechanism based on imprecise probabilities is proposed, where the statistical distribution parameters in simulation are intervals instead of precise real numbers. This approach incorporates variability and uncertainty in systems. In this research, a standard procedure to estimate interval parameters of probability distributions is developed based on the measurement of simulation robustness. New mechanisms based on the inverse transform to generate interval random variates are proposed. A generic approach to specify the required replication length to achieve a desired level of robustness is derived. Furthermore, three simulation clock advancement approaches in the interval-based simulation are investigated. A library of Java-based IBS toolkits that simulates queueing systems is developed to demonstrate the new proposed reliable simulation. New interval statistics for interval data analysis are proposed to support decision making. To assess the performance of the IBS, we developed an interval-based metamodel for automated material handling systems, which generates interval performance measures that are more reliable and computationally more efficient than traditional DES simulation results.
Show less - Date Issued
- 2010
- Identifier
- CFE0003343, ucf:48441
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003343
- Title
- Simulation, Analysis, and Optimization of Heterogeneous CPU-GPU Systems.
- Creator
-
Giles, Christopher, Heinrich, Mark, Ewetz, Rickard, Lin, Mingjie, Pattanaik, Sumanta, Flitsiyan, Elena, University of Central Florida
- Abstract / Description
-
With the computing industry's recent adoption of the Heterogeneous System Architecture (HSA) standard, we have seen a rapid change in heterogeneous CPU-GPU processor designs. State-of-the-art heterogeneous CPU-GPU processors tightly integrate multicore CPUs and multi-compute unit GPUs together on a single die. This brings the MIMD processing capabilities of the CPU and the SIMD processing capabilities of the GPU together into a single cohesive package with new HSA features comprising better...
Show moreWith the computing industry's recent adoption of the Heterogeneous System Architecture (HSA) standard, we have seen a rapid change in heterogeneous CPU-GPU processor designs. State-of-the-art heterogeneous CPU-GPU processors tightly integrate multicore CPUs and multi-compute unit GPUs together on a single die. This brings the MIMD processing capabilities of the CPU and the SIMD processing capabilities of the GPU together into a single cohesive package with new HSA features comprising better programmability, coherency between the CPU and GPU, shared Last Level Cache (LLC), and shared virtual memory address spaces. These advancements can potentially bring marked gains in heterogeneous processor performance and have piqued the interest of researchers who wish to unlock these potential performance gains. Therefore, in this dissertation I explore the heterogeneous CPU-GPU processor and application design space with the goal of answering interesting research questions, such as, (1) what are the architectural design trade-offs in heterogeneous CPU-GPU processors and (2) how do we best maximize heterogeneous CPU-GPU application performance on a given system. To enable my exploration of the heterogeneous CPU-GPU design space, I introduce a novel discrete event-driven simulation library called KnightSim and a novel computer architectural simulator called M2S-CGM. M2S-CGM includes all of the simulation elements necessary to simulate coherent execution between a CPU and GPU with shared LLC and shared virtual memory address spaces. I then utilize M2S-CGM for the conduct of three architectural studies. First, I study the architectural effects of shared LLC and CPU-GPU coherence on the overall performance of non-collaborative GPU-only applications. Second, I profile and analyze a set of collaborative CPU-GPU applications to determine how to best optimize them for maximum collaborative performance. Third, I study the impact of varying four key architectural parameters on collaborative CPU-GPU performance by varying GPU compute unit coalesce size, GPU to memory controller bandwidth, GPU frequency, and system wide switching fabric latency.
Show less - Date Issued
- 2019
- Identifier
- CFE0007807, ucf:52346
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007807
- Title
- DATA BANDWIDTH REDUCTION TECHNIQUES FOR DISTRIBUTED EMBEDDED SIMULATION USING CONCURRENT BEHAVIOR MODELS.
- Creator
-
Bahr, Hubert, DeMara, Ronald, University of Central Florida
- Abstract / Description
-
Maintaining coherence between the independent views of multiple participants at distributed locations is essential in an Embedded Simulation environment. Currently, the Distributed Interactive Simulation (DIS) protocol maintains coherence by broadcasting the entity state streams from each simulation station. In this dissertation, a novel alternative to DIS that replaces the transmitting sources with local sources is developed, validated, and assessed by analytical and experimental means. The...
Show moreMaintaining coherence between the independent views of multiple participants at distributed locations is essential in an Embedded Simulation environment. Currently, the Distributed Interactive Simulation (DIS) protocol maintains coherence by broadcasting the entity state streams from each simulation station. In this dissertation, a novel alternative to DIS that replaces the transmitting sources with local sources is developed, validated, and assessed by analytical and experimental means. The proposed Concurrent Model approach reduces the communication burden to transmission of only synchronization and model-update messages. Necessary and sufficient conditions for the correctness of Concurrent Models in a discrete event simulation environment are established by developing Behavioral Congruence ¨B(EL, ER) and Temporal Congruence ¨T(t, ER) functions. They indicate model discrepancies with respect to the simulation time t, and the local and remote entity state streams EL and ER, respectively. Performance benefits were quantified in terms of the bandwidth reduction ratio BR=N/I obtained from the comparison of the OneSAF Testbed Semi-Automated Forces (OTBSAF) simulator under DIS requiring a total of N bits and a testbed modified for the Concurrent Model approach which required I bits. In the experiments conducted, a range of 100 d BR d 294 was obtained representing two orders of magnitude reduction in simulation traffic. Investigation showed that the models rely heavily on the priority data structure of the discrete event simulation and that performance of the overall simulation can be enhanced by an additional 6% by improving the queue management. A low run-time overhead, self-adapting storage policy called the Smart Priority Queue (SPQ) was developed and evaluated within the Concurrent Model. The proposed SPQ policies employ a lowcomplexity linear queue for near head activities and a rapid-indexing variable binwidth calendar queue for distant events. The SPQ configuration is determined by monitoring queue access behavior using cost scoring factors and then applying heuristics to adjust the organization of the underlying data structures. Results indicate that optimizing storage to the spatial distribution of queue access can decrease HOLD operation cost between 25% and 250% over existing algorithms such as calendar queues. Taken together, these techniques provide an entity state generation mechanism capable of overcoming the challenges of Embedded Simulation in harsh mobile communications environments with restricted bandwidth, increased message latency, and extended message drop-outs.
Show less - Date Issued
- 2004
- Identifier
- CFE0000198, ucf:46166
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000198
- Title
- IMPROVING PROJECT MANAGEMENT WITH SIMULATION AND COMPLETION DISTRIBUTION FUNCTIONS.
- Creator
-
Cates, Grant, Mollaghasemi, Mansooreh, University of Central Florida
- Abstract / Description
-
Despite the critical importance of project completion timeliness, management practices in place today remain inadequate for addressing the persistent problem of project completion tardiness. Uncertainty has been identified as a contributing factor in late projects. This uncertainty resides in activity duration estimates, unplanned upsetting events, and the potential unavailability of critical resources. This research developed a comprehensive simulation based methodology for conducting...
Show moreDespite the critical importance of project completion timeliness, management practices in place today remain inadequate for addressing the persistent problem of project completion tardiness. Uncertainty has been identified as a contributing factor in late projects. This uncertainty resides in activity duration estimates, unplanned upsetting events, and the potential unavailability of critical resources. This research developed a comprehensive simulation based methodology for conducting quantitative project completion-time risk assessments. The methodology enables project stakeholders to visualize uncertainty or risk, i.e. the likelihood of their project completing late and the magnitude of the lateness, by providing them with a completion time distribution function of their projects. Discrete event simulation is used to determine a project's completion distribution function. The project simulation is populated with both deterministic and stochastic elements. Deterministic inputs include planned activities and resource requirements. Stochastic inputs include activity duration growth distributions, probabilities for unplanned upsetting events, and other dynamic constraints upon project activities. Stochastic inputs are based upon past data from similar projects. The time for an entity to complete the simulation network, subject to both the deterministic and stochastic factors, represents the time to complete the project. Multiple replications of the simulation are run to create the completion distribution function. The methodology was demonstrated to be effective for the on-going project to assemble the International Space Station. Approximately $500 million per month is being spent on this project, which is scheduled to complete by 2010. Project stakeholders participated in determining and managing completion distribution functions. The first result was improved project completion risk awareness. Secondly, mitigation options were analyzed to improve project completion performance and reduce total project cost.
Show less - Date Issued
- 2004
- Identifier
- CFE0000209, ucf:46243
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000209
- Title
- ITERCHANGING DISCRETE EVENT SIMULATIONPROCESS INTERACTION MODELSUSING THE WEB ONTOLOGY LANGUAGE - OWL.
- Creator
-
Lacy, Lee, Sepulveda, Jose, University of Central Florida
- Abstract / Description
-
Discrete event simulation development requires significant investments in time and resources. Descriptions of discrete event simulation models are associated with world views, including the process interaction orientation. Historically, these models have been encoded using high-level programming languages or special purpose, typically vendor-specific, simulation languages. These approaches complicate simulation model reuse and interchange. The current document-centric World Wide Web is...
Show moreDiscrete event simulation development requires significant investments in time and resources. Descriptions of discrete event simulation models are associated with world views, including the process interaction orientation. Historically, these models have been encoded using high-level programming languages or special purpose, typically vendor-specific, simulation languages. These approaches complicate simulation model reuse and interchange. The current document-centric World Wide Web is evolving into a Semantic Web that communicates information using ontologies. The Web Ontology Language OWL, was used to encode a Process Interaction Modeling Ontology for Discrete Event Simulations (PIMODES). The PIMODES ontology was developed using ontology engineering processes. Software was developed to demonstrate the feasibility of interchanging models from commercial simulation packages using PIMODES as an intermediate representation. The purpose of PIMODES is to provide a vendor-neutral open representation to support model interchange. Model interchange enables reuse and provides an opportunity to improve simulation quality, reduce development costs, and reduce development times.
Show less - Date Issued
- 2006
- Identifier
- CFE0001353, ucf:46977
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001353
- Title
- Simulation-Based Cognitive Workload Modeling and Evaluation of Adaptive Automation Invoking and Revoking Strategies.
- Creator
-
Rusnock, Christina, Geiger, Christopher, Karwowski, Waldemar, Xanthopoulos, Petros, Reinerman, Lauren, University of Central Florida
- Abstract / Description
-
In human-computer systems, such as supervisory control systems, large volumes of incoming and complex information can degrade overall system performance. Strategically integrating automation to offload tasks from the operator has been shown to increase not only human performance but also operator efficiency and safety. However, increased automation allows for increased task complexity, which can lead to high cognitive workload and degradation of situational awareness. Adaptive automation is...
Show moreIn human-computer systems, such as supervisory control systems, large volumes of incoming and complex information can degrade overall system performance. Strategically integrating automation to offload tasks from the operator has been shown to increase not only human performance but also operator efficiency and safety. However, increased automation allows for increased task complexity, which can lead to high cognitive workload and degradation of situational awareness. Adaptive automation is one potential solution to resolve these issues, while maintaining the benefits of traditional automation. Adaptive automation occurs dynamically, with the quantity of automated tasks changing in real-time to meet performance or workload goals. While numerous studies evaluate the relative performance of manual and adaptive systems, little attention has focused on the implications of selecting particular invoking or revoking strategies for adaptive automation. Thus, evaluations of adaptive systems tend to focus on the relative performance among multiple systems rather than the relative performance within a system.This study takes an intra-system approach specifically evaluating the relationship between cognitive workload and situational awareness that occurs when selecting a particular invoking-revoking strategy for an adaptive system. The case scenario is a human supervisory control situation that involves a system operator who receives and interprets intelligence outputs from multiple unmanned assets, and then identifies and reports potential threats and changes in the environment. In order to investigate this relationship between workload and situational awareness, discrete event simulation (DES) is used. DES is a standard technique in the analysis of systems, and the advantage of using DES to explore this relationship is that it can represent a human-computer system as the state of the system evolves over time. Furthermore, and most importantly, a well-designed DES model can represent the human operators, the tasks to be performed, and the cognitive demands placed on the operators. In addition to evaluating the cognitive workload to situational awareness tradeoff, this research demonstrates that DES can quite effectively model and predict human cognitive workload, specifically for system evaluation.This research finds that the predicted workload of the DES models highly correlates with well-established subjective measures and is more predictive of cognitive workload than numerous physiological measures. This research then uses the validated DES models to explore and predict the cognitive workload impacts of adaptive automation through various invoking and revoking strategies. The study provides insights into the workload-situational awareness tradeoffs that occur when selecting particular invoking and revoking strategies. First, in order to establish an appropriate target workload range, it is necessary to account for both performance goals and the portion of the workload-performance curve for the task in question. Second, establishing an invoking threshold may require a tradeoff between workload and situational awareness, which is influenced by the task's location on the workload-situational awareness continuum. Finally, this study finds that revoking strategies differ in their ability to achieve workload and situational awareness goals. For the case scenario examined, revoking strategies based on duration are best suited to improve workload, while revoking strategies based on revoking thresholds are better for maintaining situational awareness.
Show less - Date Issued
- 2013
- Identifier
- CFE0004927, ucf:49607
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004927
- Title
- An Integrated Framework for Automated Data Collection and Processing for Discrete Event Simulation Models.
- Creator
-
Rodriguez, Carlos, Kincaid, John, Karwowski, Waldemar, O'Neal, Thomas, Kaup, David, Mouloua, Mustapha, University of Central Florida
- Abstract / Description
-
Discrete Events Simulation (DES) is a powerful tool of modeling and analysis used in different disciplines. DES models require data in order to determine the different parameters that drive the simulations. The literature about DES input data management indicates that the preparation of necessary input data is often a highly manual process, which causes inefficiencies, significant time consumption and a negative user experience.The focus of this research investigation is addressing the manual...
Show moreDiscrete Events Simulation (DES) is a powerful tool of modeling and analysis used in different disciplines. DES models require data in order to determine the different parameters that drive the simulations. The literature about DES input data management indicates that the preparation of necessary input data is often a highly manual process, which causes inefficiencies, significant time consumption and a negative user experience.The focus of this research investigation is addressing the manual data collection and processing (MDCAP) problem prevalent in DES projects. This research investigation presents an integrated framework to solve the MDCAP problem by classifying the data needed for DES projects into three generic classes. Such classification permits automating and streamlining the preparation of the data, allowing DES modelers to collect, update, visualize, fit, validate, tally and test data in real-time, by performing intuitive actions. In addition to the proposed theoretical framework, this project introduces an innovative user interface that was programmed based on the ideas of the proposed framework. The interface is called DESI, which stands for Discrete Event Simulation Inputs.The proposed integrated framework to automate DES input data preparation was evaluated against benchmark measures presented in the literature in order to show its positive impact in DES input data management. This research investigation demonstrates that the proposed framework, instantiated by the DESI interface, addresses current gaps in the field, reduces the time devoted to input data management within DES projects and advances the state-of-the-art in DES input data management automation.
Show less - Date Issued
- 2015
- Identifier
- CFE0005878, ucf:50861
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005878
- Title
- A Generic Framework For Multi-Method Modeling and Simulation of Complex Systems Using Discrete Event, System Dynamics and Agent Based Approaches.
- Creator
-
Mykoniatis, Konstantinos, Karwowski, Waldemar, Kincaid, John, Xanthopoulos, Petros, Akbas, Ilhan, University of Central Florida
- Abstract / Description
-
Decisions about Modeling and Simulation (M(&)S) of Complex Systems (CS) need to be evaluated prior to implementation. Discrete Event (DE), System Dynamics (SD), and Agent Based (AB) are three different M(&)S approaches widely applied to enhance decision-making of complex systems. However, single type M(&)S approaches can face serious challenges in representing the overall multidimensional nature of CS and may result in the design of oversimplified models excluding important factors....
Show moreDecisions about Modeling and Simulation (M(&)S) of Complex Systems (CS) need to be evaluated prior to implementation. Discrete Event (DE), System Dynamics (SD), and Agent Based (AB) are three different M(&)S approaches widely applied to enhance decision-making of complex systems. However, single type M(&)S approaches can face serious challenges in representing the overall multidimensional nature of CS and may result in the design of oversimplified models excluding important factors. Conceptual frameworks are necessary to offer useful guidance for combining and/or integrating different M(&)S approaches. Although several hybrid M(&)S frameworks have been described and are currently deployed, there is limited guidance on when, why and how to combine, and/or integrate DE, SD, and AB approaches. The existing hybrid frameworks focus more on how to deal with specific problems rather than to provide a generic way of applicability to various problem situations.The main aim of this research is to develop a generic framework for Multi-Method Modeling and Simulation of CS, which provides a practical guideline to integrated deployment or combination of DE, SD, and AB M(&)S methods. The key contributions of this dissertation include: (1) a meta-analysis literature review that identifies criteria and generic types of interaction relationships that are served as a basis for the development of a multi-method modeling and simulation framework; (2) a methodology and a framework that guide the user through the development of multi-method simulation models to solve CS problems; (3) an algorithm that recommends appropriate M(&)S method(s) based on the user selected criteria for user defined objective(s); (4) the implementation and evaluation of multi method simulation models based on the framework's recommendation in diverse domains; and (5) the comparison of multi-method simulation models created by following the multi-method modeling and simulation framework.It is anticipated that this research will inspire and motivate students, researchers, practitioners and decision makers engaged in M(&)S to become aware of the benefits of the cross-fertilization of the three key M(&)S methods.
Show less - Date Issued
- 2015
- Identifier
- CFE0005980, ucf:50762
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005980
- Title
- A Simulation-Based Evaluation Of Efficiency Strategies For A Primary Care Clinic With Unscheduled Visits.
- Creator
-
Bobbie, Afrifah, Karwowski, Waldemar, Thompson, William, Elshennawy, Ahmad, Mikusinski, Piotr, University of Central Florida
- Abstract / Description
-
In the health care industry, there are strategies to remove inefficiencies from the health delivery process called efficiency strategies. This dissertation proposed a simulation model to evaluate the impact of the efficiency strategies on a primary care clinic with unscheduled "walk-in" patient visits. The simulation model captures the complex characteristics of the Orlando Veteran's Affairs Medical Center (VAMC) primary care clinic. This clinic system includes different types of patients,...
Show moreIn the health care industry, there are strategies to remove inefficiencies from the health delivery process called efficiency strategies. This dissertation proposed a simulation model to evaluate the impact of the efficiency strategies on a primary care clinic with unscheduled "walk-in" patient visits. The simulation model captures the complex characteristics of the Orlando Veteran's Affairs Medical Center (VAMC) primary care clinic. This clinic system includes different types of patients, patient paths, and multiple resources that serve them. Added to the problem complexity is the presence of patient no-shows characteristics and unscheduled patient arrivals, a problem which has been until recently, largely neglected. The main objectives of this research were to develop a model that captures the complexities of the Orlando VAMC, evaluate alternative scenarios to work in unscheduled patient visits, and examine the impact of patient flow, appointment scheduling, and capacity management decisions on the performance of the primary care clinic system. The main results show that only a joint policy of appointment scheduling rules and patient flow decisions has a significant impact on the wait time of scheduled patients. It is recommended that in the future the clinic addresses the problem of serving additional walk-in patients from an integrated scheduling and patient flow viewpoint.
Show less - Date Issued
- 2016
- Identifier
- CFE0006443, ucf:51462
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006443
- Title
- A Simulation-Based Task Analysis using Agent-Based, Discrete Event and System Dynamics simulation.
- Creator
-
Angelopoulou, Anastasia, Karwowski, Waldemar, Kincaid, John, Xanthopoulos, Petros, Hancock, Peter, University of Central Florida
- Abstract / Description
-
Recent advances in technology have increased the need for using simulation models to analyze tasks and obtain human performance data. A variety of task analysis approaches and tools have been proposed and developed over the years. Over 100 task analysis methods have been reported in the literature. However, most of the developed methods and tools allow for representation of the static aspects of the tasks performed by expert system-driven human operators, neglecting aspects of the work...
Show moreRecent advances in technology have increased the need for using simulation models to analyze tasks and obtain human performance data. A variety of task analysis approaches and tools have been proposed and developed over the years. Over 100 task analysis methods have been reported in the literature. However, most of the developed methods and tools allow for representation of the static aspects of the tasks performed by expert system-driven human operators, neglecting aspects of the work environment, i.e. physical layout, and dynamic aspects of the task. The use of simulation can help face the new challenges in the field of task analysis as it allows for simulation of the dynamic aspects of the tasks, the humans performing them, and their locations in the environment. Modeling and/or simulation task analysis tools and techniques have been proven to be effective in task analysis, workload, and human reliability assessment. However, most of the existing task analysis simulation models and tools lack features that allow for consideration of errors, workload, level of operator's expertise and skills, among others. In addition, the current task analysis simulation tools require basic training on the tool to allow for modeling the flow of task analysis process and/or error and workload assessment. The modeling process is usually achieved using drag and drop functionality and, in some cases, programming skills.This research focuses on automating the modeling process and simulating individuals (or groups of individuals) performing tasks in a dynamic work environment in any domain. The main objective of this research is to develop a universal tool that allows for modeling and simulation of task analysis models in a short amount of time with limited need for training or knowledge of modeling and simulation theory. A Universal Task Analysis Simulation Modeling (UTASiMo) tool can be used for automatically generating simulation models that analyze the tasks performed by human operators. UTASiMo is a multi-method modeling and simulation tool developed as a combination of agent-based, discrete event, and system dynamics simulation models. A generic multi-method modeling and simulation framework, named 3M(&)S Framework, as well as the Unified Modeling Language have been used for the design of the conceptual model and the implementation of the simulation tool. UTASiMo-generated models are dynamically created during run-time based on user inputs. The simulation results include estimations of operator workload, task completion time, and probability of human errors based on human operator variability and task structure.
Show less - Date Issued
- 2015
- Identifier
- CFE0006252, ucf:51040
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006252