Current Search: Electron Paramagnetic Resonance (x)
View All Items
- Title
- Exchange coupling in molecular magnets: Zero, one and three dimensions.
- Creator
-
Amjad, Asma, Gonzalez Garcia, Enrique, Klemm, Richard, Peale, Robert, Hill, Stephen, University of Central Florida
- Abstract / Description
-
Molecular magnets with different dimensionality, whether they are zero-dimensional single-molecule magnets (SMM) or one-dimensional single-chain magnets (SCM) are very interesting, since they allow probing the fundamental aspects bordering quantum and classical physics at the nanoscale level. This dissertation covers experimental studies of two Mn-based exchange-coupled molecule-based magnets and two Co-based single-chain magnets, using both dc Hall-effect magnetometry and electron paramagnet...
Show moreMolecular magnets with different dimensionality, whether they are zero-dimensional single-molecule magnets (SMM) or one-dimensional single-chain magnets (SCM) are very interesting, since they allow probing the fundamental aspects bordering quantum and classical physics at the nanoscale level. This dissertation covers experimental studies of two Mn-based exchange-coupled molecule-based magnets and two Co-based single-chain magnets, using both dc Hall-effect magnetometry and electron paramagnet resonance (EPR) techniques. In these multi-dimensional systems, the spin of the molecule exhibits quantum mechanical behavior at low temperature. It is quite interesting to observe the effect of magnetic exchange interactions on the magnetic properties of various complexes; hence they strongly affect the magnetic behavior.In this dissertation, the research is initiated with the study of low-magnetic-nuclearity molecules, starting with a spectroscopic study of a significantly anisotropic Mn(IV) monomer. At low temperature the molecule possesses easy-plane type anisotropy of a remarkable magnitude. Although the molecule is not a single-molecule magnet, the remarkable anisotropy can initiate synthesis of newer and better molecular magnets with Mn(IV) as the main building block. Furthermore, the interplay between the magnetic anisotropy and the inter-ion exchange interactions (J) within the molecule are probed for a dimer and a trimer where the magnetic core is comprised of two and three ions respectively. In the Mn-based case of the dimer, the low coupling between the atoms leads to significant state mixing, thus making it impossible to assign the individual spin states to the dimer or to the respective individual Mn(II) ions. In the case of the trimer, lowering of the symmetry achieved by fine tuning of the inter-ion exchange interactions leads to relieving of frustration in the antiferromagnetic (AF) triangular Mn(III) system, resulting in a well defined ground state and significant zero field splitting. Also a clear hysteretic behavior observed in this system demonstrates its SMM nature at low temperature. Finally, high-field high-frequency magnetic and spectroscopic studies performed on two cobalt-based SCMs reveal that formation of magnetic domains by exchange interactions within the chain are strongly influenced by thermal fluctuations. The chain possesses a uniaxial anisotropy with the quantization axis lying along the length of the chain. Moreover it is shown that modulation of the magnitude of inter- and intra-chain interactions results in a three-dimensional dynamics in one of the samples. Interestingly, detailed dc magnetic studies show a tunable crossover between one- and three-dimensional magnetic dynamics as a function of temperature and/or magnetic field sweep rate. Our voyage through several molecular systems of different dimensionality have allowed us to expand our understanding of the role of exchange interactions on the magnetic behavior in molecular magnetism.
Show less - Date Issued
- 2013
- Identifier
- CFE0004806, ucf:49723
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004806
- Title
- THE FABRICATION OF POLYMER-DERIVED SICN/SIBCN CERAMIC NANOSTRUCTURES AND INVESTIGATION OF THEIR STRUCTURE-PROPERTY RELATIONSHIP.
- Creator
-
Sarkar, Sourangsu, Zhai, Lei, University of Central Florida
- Abstract / Description
-
Polymer-derived Ceramics (PDCs) represent a unique class of high-temperature stable materials synthesized directly by the thermal decomposition of polymers. This research first focuses on the fabrication of high temperature stable siliconcarbonitride (SiCN) fibers by electrospinning for ceramic matrix composite (CMC) applications. CerasetÃÂÃÂÃÂÃÂ VL20, a commercially available liquid...
Show morePolymer-derived Ceramics (PDCs) represent a unique class of high-temperature stable materials synthesized directly by the thermal decomposition of polymers. This research first focuses on the fabrication of high temperature stable siliconcarbonitride (SiCN) fibers by electrospinning for ceramic matrix composite (CMC) applications. CerasetÃÂÃÂÃÂàVL20, a commercially available liquid cyclosilazane, was functionalized with aluminum sec-butoxide in order to be electrospinnable. The surface morphology of the electrospun fibers was investigated using the fibers produced from solvents. The electrospun fibers produced from the chloroform/N,N-dimethylformamide solutions had hierarchical structures that led to superhydrophobic surfaces. A ÃÂÃÂÃÂÃÂ"dry skinÃÂÃÂÃÂÃÂ" model was proposed to explain the formation of micro/- and nanostructures. The second objective of the research is to align the multiwalled carbon nanotubes (MWCNTs) in PDC fibers. For this purpose, a non-invasive approach to disperse carbon nanotubes in polyaluminasilazane chloroform solutions was developed using a conjugated block copolymer synthesized by ATRP. The effect of the polymer and CNT concentration on the fiber structure and morphology was also examined. Detailed characterization using SEM and TEM was performed to demonstrate the orientation of CNTs inside the ceramic fibers. Additionally, the electrical properties of the ceramic fibers were investigated. Finally, the structural evolution of polymer-derived amorphous siliconborocarbonitride (SiBCN) ceramics with pyrolysis temperatures was studied by solid-state NMR, Raman and EPR spectroscopy. Results suggested the presence of three major components: (i) hexagonal boron nitride (h-BN), (ii) turbostratic boron nitride (t-BN), and (iii) BN2C groups in the final ceramic. The pyrolysis at higher temperature generated boron nitride (BN3) with a simultaneous decomposition of BN2C groups. A thermodynamic model was proposed to quantitatively explain the conversion of BN2C groups into BN3 and ÃÂÃÂÃÂÃÂ"freeÃÂÃÂÃÂÃÂ" carbon. Such structure evolution is believed to be the reason that the crystallization of Si4.0B1.0 ceramics starts at 1500 ÃÂÃÂÃÂðC, whereas Si2.0B1.0 ceramics is stable upto 1600 ÃÂÃÂÃÂðC.
Show less - Date Issued
- 2010
- Identifier
- CFE0003446, ucf:48408
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003446