Current Search: Esophageal cancer (x)
View All Items
- Title
- USING LOW-COHERENCE INTERFEROMETRY TO MONITOR CELL INVASION IN AN IN-VITRO MODEL SYSTEM.
- Creator
-
Davoudi Nasab, Behnaz, Dogariu, Aristide, Andl, Claudia, University of Central Florida
- Abstract / Description
-
In an optically random system, such as naturally occurring and man-made media, light undergoes pronounced multiple scattering. This phenomenon has shown a remarkable potential in characterizing complex materials. In this regime, scattering occurs from each individual center of the scattering and independent scattering events lead to multiple light scattering. This phenomenon is often described as a random walk of photons and can be modeled in terms of a diffusion equation based on the...
Show moreIn an optically random system, such as naturally occurring and man-made media, light undergoes pronounced multiple scattering. This phenomenon has shown a remarkable potential in characterizing complex materials. In this regime, scattering occurs from each individual center of the scattering and independent scattering events lead to multiple light scattering. This phenomenon is often described as a random walk of photons and can be modeled in terms of a diffusion equation based on the radiative transfer theory. In this thesis, we used optical path-length spectroscopy (OPS), which is an experimental method to obtain the path-length probability density of the propagating light in multiple scattering media, with a low-coherence optical field to investigate the distribution of photon path lengths in a skin cell model system. This method is capable of measuring the transport mean free path of light in a highly scattering medium and depth-resolved profiles of the backscattered light. Our OPS experimental configuration is based on a fiber-optic Michelson interferometer geometry using single mode optical fibers. We performed OPS based on low-coherence interferometry (LCI) on three-dimensional organotypic models of esophageal cell invasion by measuring the optical path-length distribution of backscattered light in normal and invasive conditions. The optical path-length distribution of light waves inside the cell samples provides information on how a change in the extracellular matrix affects invasiveness of the esophageal cells and induction of signaling pathways. Also, we demonstrated the compatibility to study the structural changes during a two-week period for in vitro cell samples.
Show less - Date Issued
- 2017
- Identifier
- CFH2000219, ucf:45955
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH2000219
- Title
- Investigating changes in quiescence in oral and esophageal epithelium in response to injury.
- Creator
-
Rothaus, Alexandra, Andl, Claudia, Chakrabarti, Ratna, Singla, Dinender, University of Central Florida
- Abstract / Description
-
More than 570,000 new cases of esophageal cancer are estimated to be diagnosed annually worldwide. Risk factors include gender, age, tobacco use and dietary habits leading to tissue injury and ultimately cancer. While prognoses for other cancers have improved, the 5-year survival for patients with esophageal cancer is only 20%. During the repair process, cell proliferation is increased and is associated with inflammation. Slow-cycling lifetime residential stem cells, called quiescent cells,...
Show moreMore than 570,000 new cases of esophageal cancer are estimated to be diagnosed annually worldwide. Risk factors include gender, age, tobacco use and dietary habits leading to tissue injury and ultimately cancer. While prognoses for other cancers have improved, the 5-year survival for patients with esophageal cancer is only 20%. During the repair process, cell proliferation is increased and is associated with inflammation. Slow-cycling lifetime residential stem cells, called quiescent cells, facilitate repair but are thought to accumulate mutations during DNA replication eventually giving rise to cancer. We hypothesize that esophageal stem cells become activated upon injury and are regulated by Transforming Growth Factor beta 1 (TGF?1), a known regulator of cell proliferation and differentiation. We established an in vitro model of quiescence using normal esophageal epithelial (STR) and oral (OKF6) cells treated with recombinant human TGF?1. Flow cytometry showed increases in cells arrested in G1/G0 phase of the cell cycle in TGF?1 treated cells for both cell lines (STR p(<)0.01, OKF6 p(<)0.05). EdU (5-ethynyl-2'-deoxyuridine) positive recovery cells indicated quiescence in both cell lines (p(<)0.01). Analysis of TGF?1 regulation of putative stem cell markers via western blot and qRT-PCR showed increases in ITGB1, PDPN and K15 as well as XPC, and MeCP2 in treated cells. To apply our in vitro findings, we performed immunohistochemistry staining on tissue microarrays. Proliferation marker Ki67 increased in disease progression from normal to inflammation to hyperplasia (p(<)0.001) while TGF?1 target markers decrease. Our data indicate that the onset of cancer-associated inflammation correlates with the loss of TGF?1 mediated stemness markers and increased basal proliferation suggesting cancer is a stem cell disease.
Show less - Date Issued
- 2019
- Identifier
- CFE0007903, ucf:52754
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007903