View All Items
- Title
- REDUCED VISIBILITY RELATED CRASHES IN FLORIDA: CRASH CHARACTERISTICS, SPATIAL ANALYSIS AND INJURY SEVERITY.
- Creator
-
EKRAM, AL-AHAD, Abdel-Aty, Mohamed, University of Central Florida
- Abstract / Description
-
Roadway crashes related to vision obstruction due to fog/smoke (FS) conditions constitute a challenge for traffic engineers. Previous research efforts mostly concentrated on the snow and rain related crashes. Statistics show that Florida is among the top three states in terms of crashes due to vision obstruction by FS. This research culminated in a comprehensive study of fog and smoke related crashes in the state of Florida. The analysis took into account the crashes that occurred between...
Show moreRoadway crashes related to vision obstruction due to fog/smoke (FS) conditions constitute a challenge for traffic engineers. Previous research efforts mostly concentrated on the snow and rain related crashes. Statistics show that Florida is among the top three states in terms of crashes due to vision obstruction by FS. This research culminated in a comprehensive study of fog and smoke related crashes in the state of Florida. The analysis took into account the crashes that occurred between 2003 and 2007 on Florida state roads. Spatial analysis and injury severity analysis have been conducted and significant results have been identified. The spatial analysis by GIS examines the locations of high trends of FS related crashes on state roads in the State of Florida. Statistical features of the GIS tool, which is used efficiently in traffic safety research, has been used to find the crash clusters for the particular types of crashes that occur due to vision obstruction by FS. Several segmentation processes have been used, and the best segmentation for this study was found to be dividing the state roads into 1 mile segments, keeping the roadway characteristics uniform. Taking into account the entire state road network, ten distinct clusters were found that can be clearly associated with these types of crashes. However, no clear pattern in terms of area was observed, as it was seen that the percentage of FS related crashes in rural and urban areas are close. The general characteristics of FS related crashes have been investigated in detail. For the comparison to clear visibility conditions, simple odds ratios (in terms of crash frequencies) have been introduced. The morning hours in the months of December to February are found to be the prevalent time for fog related crashes, while for the smoke related crashes the dangerous time was found to be morning to midday in the month of May. Compared to crashes under clear-visibility conditions, the fog crashes tend to result in more severe injuries and involve more vehicles. Head-on and rear-end crashes are the two most common crash types in terms of crash frequency and severe crashes. For the injury severity analysis, a random effect ordered logistic model was used. The model in brief illustrates that the head-on and rear-end crash types are the two most prevalent crash types in FS conditions. Moreover, these severe crashes mainly occurred at higher speeds. Also they mostly took place on undivided roads, roadways without any sidewalk and two-lane rural roads. Increase of average daily traffic decrease the severity of FS related crashes. Overall, this study provides the Florida Department of Transportation (FDOT) with specific information on where improvements could be made to have better safety conditions in terms of vision obstruction due to FS in the state roads of Florida. Also it suggests the times and seasons that the safety precautions must be taken or the FS warning systems to be installed, and the controlling roadway geometries that can be improved or modified to reduce injury severity of a crash due to FS related vision obstruction.
Show less - Date Issued
- 2009
- Identifier
- CFE0002903, ucf:48008
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002903
- Title
- Improving Safety under Reduced Visibility Based on Multiple Countermeasures and Approaches including Connected Vehicles.
- Creator
-
Wu, Yina, Abdel-Aty, Mohamed, Lee, JaeYoung, Eluru, Naveen, University of Central Florida
- Abstract / Description
-
The effect of low visibility on both crash occurrence and severity is a major concern in the traffic safety field. Different approaches were utilized in this research to analyze the effects of fog on traffic safety and evaluate the effectiveness of different fog countermeasures. First, a (")Crash Risk Increase Indicator (CRII)(") was proposed to explore the differences of crash risk between fog and clear conditions. A binary logistic regression model was applied to link the increase of crash...
Show moreThe effect of low visibility on both crash occurrence and severity is a major concern in the traffic safety field. Different approaches were utilized in this research to analyze the effects of fog on traffic safety and evaluate the effectiveness of different fog countermeasures. First, a (")Crash Risk Increase Indicator (CRII)(") was proposed to explore the differences of crash risk between fog and clear conditions. A binary logistic regression model was applied to link the increase of crash risk with traffic flow characteristics. Second, a new algorithm was proposed to evaluate the rear-end crash risk under fog conditions. Logistic and negative binomial models were estimated in order to explore the relationship between the potential of rear-end crashes and the reduced visibility together with other traffic parameters. Moreover, the effectiveness of real-time fog warning systems was assessed by quantifying and characterizing drivers' speed adjustments through driving simulator experiments. A hierarchical assessment concept was suggested to explore the drivers' speed adjustment maneuvers. Two linear regression models and one hurdle beta regression model were estimated for the indexes. Also, another driving simulator experiment was conducted to explore the effectiveness of Connected-Vehicles (CV) crash warning systems on the drivers' awareness of the imminent situation ahead to take timely crash avoidance action(s). Finally, a micro-simulation experiment was also conducted to evaluate the safety benefits of a proposed Variable Speed limit (VSL) strategy and CV technologies. The proposed VSL strategy and CV technologies were implemented and tested for a freeway section through the micro-simulation software VISSIM. The results of the above mentioned studies showed the impact of reduced visibility on traffic safety, and the effectiveness of different fog countermeasures.
Show less - Date Issued
- 2017
- Identifier
- CFE0006928, ucf:51704
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006928
- Title
- TRAFFIC CONFLICT ANALYSIS UNDER FOG CONDITIONS USING COMPUTER SIMULATION.
- Creator
-
Zhang, Binya, Radwan, Essam, Abdel-Aty, Mohamed, Abou-Senna, Hatem, University of Central Florida
- Abstract / Description
-
The weather condition is a crucial influence factor on road safety issues. Fog is one of the most noticeable weather conditions, which has a significant impact on traffic safety. Such condition reduces the road's visibility and consequently can affect drivers' vision, perception, and judgments. The statistical data shows that many crashes are directly or indirectly caused by the low-visibility weather condition. Hence, it is necessary for road traffic engineers to study the relationship of...
Show moreThe weather condition is a crucial influence factor on road safety issues. Fog is one of the most noticeable weather conditions, which has a significant impact on traffic safety. Such condition reduces the road's visibility and consequently can affect drivers' vision, perception, and judgments. The statistical data shows that many crashes are directly or indirectly caused by the low-visibility weather condition. Hence, it is necessary for road traffic engineers to study the relationship of road traffic accidents and their influence factors. Among these factors, the traffic volume and the speed limits in poor visibility areas are the primary reasons that can affect the types and occurring locations of road accidents.In this thesis, microscopic traffic simulation, through the use of VISSIM software, was used to study the road safety issue and its influencing factors due to limited visibility. A basic simulation model was built based on previously collected field data to simulate Interstate 4 (I-4)'s environment, geometry characteristics, and the basic traffic volume composition conditions. On the foundation of the basic simulation model, an experimental model was built to study the conflicts' types and distribution places under several different scenarios. Taking into consideration the entire 4-mile study area on I-4, this area was divided into 3 segments: section 1 with clear visibility, fog area of low visibility, and section 2 with clear visibility. Lower speed limits in the fog area, which were less than the limits in no-fog areas, were set to investigate the different speed limits' influence on the two main types of traffic conflicts: lane-change conflicts and rear-end conflicts. The experimental model generated several groups of traffic trajectory data files. The vehicle conflicts data were stored in these trajectory data files which, contains the conflict locations' coordinates, conflict time, time-to-conflict, and post-encroachment-time among other measures. The Surrogate Safety Assessment Model (SSAM), developed by the Federal Highway Administration, was applied to analyze these conflict data.From the analysis results, it is found that the traffic volume is an important factor, which has a large effect on the number of conflicts. The number of lane-change and rear-end conflicts increases along with the traffic volume growth. Another finding is that the difference between the speed limits in the fog area and in the no-fog areas is another significant factor that impacts the conflicts' frequency. Larger difference between the speed limits in two nearing road sections always leads to more accidents due to the inadequate reaction time for vehicle drivers to brake in time. And comparing to the scenarios that with the reduced speed limits in the low visibility zone, the condition that without the reduced speed limit has higher conflict number, which indicates that the it is necessary to put a lower speed limit in the fog zone which has a lower visibility. The results of this research have a certain reference value for studying the relationship between the road traffic conflicts and the impacts of different speed limits under fog condition. Overall, the findings of this research suggest follow up studies to further investigate possible relationships between conflicts as observed by simulation models and reported crashes in fog areas.
Show less - Date Issued
- 2015
- Identifier
- CFE0005747, ucf:50104
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005747
- Title
- Investigation of factors contributing to fog-related single vehicle crashes.
- Creator
-
Zhu, Jiazheng, Abdel-Aty, Mohamed, Hasan, Samiul, Wu, Yina, University of Central Florida
- Abstract / Description
-
Fog-related crashes continue to be one of the most serious traffic safety problems in Florida. Based on the historical crash data, we found that single-vehicle crashes have the highest severity among all types of crashes under fog conditions. This study first analyzed the contributing factors of the fog-related single-vehicle crashes' (i.e., off road/rollover/other) severity in Florida from 2011 to 2014 using association rules mining. The results show that lane departure distracted driving,...
Show moreFog-related crashes continue to be one of the most serious traffic safety problems in Florida. Based on the historical crash data, we found that single-vehicle crashes have the highest severity among all types of crashes under fog conditions. This study first analyzed the contributing factors of the fog-related single-vehicle crashes' (i.e., off road/rollover/other) severity in Florida from 2011 to 2014 using association rules mining. The results show that lane departure distracted driving, wet road surface, and dark without road light are the main contributing factors to severe fog-related single vehicle crashes. Some suggested countermeasures were also provided to reduce the risk of fog-related single vehicle crashes. Since lane departure is one of the most important contributing factors to the single-vehicle crashes, an advanced warning system for lane departure under connected vehicle system was tested in driving simulation experiments. The system was designed based on the Vehicle-to-Infrastructure (V2I) with the concept of Augmented Reality (AR) using Head-Up Display (HUD). The results show that the warning with sound would reduce the lane departure and speed at curves, which would enhance the safety under fog conditions. In addition, the warning system was more effective for female drivers.
Show less - Date Issued
- 2018
- Identifier
- CFE0007118, ucf:51935
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007118