Current Search: Hydrologic models (x)
View All Items
- Title
- A Continuous Hydrologic Model Structure for Applications at Multiple Time Scales.
- Creator
-
Griffen, Jonathan, Wang, Dingbao, O'Reilly, Andrew, Medeiros, Stephen, University of Central Florida
- Abstract / Description
-
There are many different controlling factors on the partitioning of rainfall into runoff. However, the influence of each of these controls varies across different temporal scales. Consequently, numerous water balance models have been developed in the literature for application across various time scales. These models are usually developed for a particular time scale so that the controls with the greatest influence on rainfall partitioning are captured. For example, the SCS curve number method...
Show moreThere are many different controlling factors on the partitioning of rainfall into runoff. However, the influence of each of these controls varies across different temporal scales. Consequently, numerous water balance models have been developed in the literature for application across various time scales. These models are usually developed for a particular time scale so that the controls with the greatest influence on rainfall partitioning are captured. For example, the SCS curve number method was developed to simulate direct runoff at the event scale; the (")abcd(") model was developed as a monthly water balance model; and the Budyko model was developed for long-term water balance. More recently, the proportionality hypothesis, which traces its origins from the SCS curve number method, has been identified as the commonality between these three hydrologic models, suggesting that this hypothesis may be the unifying principle of hydrologic models across various time scales.The objective of this thesis is to develop a conceptual hydrologic model structure for continuous simulations for multiple time scales. The developed model is applicable to daily, monthly, and annual time scales.Direct runoff is computed by a proportionality relationship in the SCS curve number method. In the (")abcd(") model, evapotranspiration and storage at the end of each time period are computed by a proportionality relationship, however evapotranspiration is computed based on an exponential relationship of storage and potential evapotranspiration while base flow is computed based on a linear reservoir model. In the Budyko model, runoff and evapotranspiration are computed by a proportionality relationship.The primary difference with the proposed model in this thesis in comparison with the other three water balance models is the application of the proportionality hypothesis to the partitioning of surface runoff and continuing abstraction as well as the partitioning of continuing evapotranspiration and subsurface flow.The proposed model structure is implemented in Matlab. The developed model includes six parameters, which are estimated for 71 case study catchments in the United States using a genetic algorithm. The model performances at the daily, monthly and annual time scales are evaluated during calibration and validation periods, and compared with the (")abcd(") model and a Budyko-type model developed for multiple time scales.Evaluation of the models shows that the proposed model performs better or comparable to the other models at all time scales.
Show less - Date Issued
- 2014
- Identifier
- CFE0005173, ucf:50672
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005173
- Title
- Response of Streamflow and Sediment Loading in the Apalachicola River, Florida to Climate and Land Use Land Cover Change.
- Creator
-
Hovenga, Paige, Medeiros, Stephen, Wang, Dingbao, Kibler, Kelly, University of Central Florida
- Abstract / Description
-
Located in Florida's panhandle, the Apalachicola River is the southernmost reach of the Apalachicola-Chattahoochee-Flint (ACF) River basin. Streamflow and sediment drains to Apalachicola Bay in the Northern Gulf of Mexico, directly influencing the ecology of the region, in particular seagrass and oyster production. The objective of this study is to evaluate the response of runoff and sediment loading in the Apalachicola River under projected climate change scenarios and land use / land cover ...
Show moreLocated in Florida's panhandle, the Apalachicola River is the southernmost reach of the Apalachicola-Chattahoochee-Flint (ACF) River basin. Streamflow and sediment drains to Apalachicola Bay in the Northern Gulf of Mexico, directly influencing the ecology of the region, in particular seagrass and oyster production. The objective of this study is to evaluate the response of runoff and sediment loading in the Apalachicola River under projected climate change scenarios and land use / land cover (LULC) change. A hydrologic model using the Soil Water Assessment Tool (SWAT) was developed for the Apalachicola region to simulate daily discharge and sediment load under present (circa 2000) and future conditions (circa 2100) to understand how the system responds over seasonal and event time frames to changes in climate, LULC, and coupled climate / LULC. These physically-based models incorporate a digital elevation model (DEM), LULC, soil maps, climate data, and management controls. Long Ashton Research Station-Weather Generator (LARS-WG) was used to create downscaled stochastic temperature and precipitation inputs from three Global Climate Models (GCM), each under Intergovernmental Panel on Climate Change (IPCC) carbon emission scenarios for A1B, A2, and B1. Projected 2100 LULC data provided by the United States Geological Survey (USGS) EROS Center was incorporated for each corresponding IPCC scenario. Results indicate climate change may induce seasonal shifts to both runoff and sediment loading, acting to extend periods of high flow and minimum sediment loadings or altering the time at which these events occur completely. Changes in LULC showed minimal effects on flow while more sediment loading was associated with increased agriculture and urban areas and decreased forested regions. A nonlinear response for both streamflow and sediment loading was observed by coupling climate and LULC change into the hydrologic model, indicating changes in one may exacerbate or dampen the effects of the other. Peak discharge and sediment loading associated with extreme events showed both increases and decreases in the future, with variability dependent on the GCM used. Similar behavior was observed in the total discharge resulting from extreme events and increased total sediment load was frequently predicted for the A2 and A1B scenarios for simulations involving changes in climate only, LULC only, and both climate and LULC. Output from the individual GCMs predicted differing responses of streamflow and sediment loading to changes in climate on both the seasonal and event scale. Additional region-specific research is needed to better optimize the GCM ensemble and eliminate those that provide erroneous output. In addition, future assessment of the downscaling approach to capture extreme events is required. Findings from this study can be used to further understand climate and LULC implications to the Apalachicola Bay and surrounding region as well as similar fluvial estuaries while providing tools to better guide management and mitigation practices.
Show less - Date Issued
- 2015
- Identifier
- CFE0006326, ucf:51543
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006326
- Title
- Streamflow prediction in ungauged basins located within data-scarce regions.
- Creator
-
Alipour, Mohammadhossein, Kibler, Kelly, Wang, Dingbao, Mayo, Talea, Emrich, Christopher, University of Central Florida
- Abstract / Description
-
Preservation and or restoration of riverine ecosystem requires quantification of alterations inflicted by water resources development projects. Long records of streamflow data are the first piece of information required in order to enable this analysis. Ungauged catchments located within data-scarce regions lack long records of streamflow data. In this dissertation, a multi-objective framework named Streamflow Prediction under Extreme Data-scarcity (SPED) is proposed for streamflow prediction...
Show morePreservation and or restoration of riverine ecosystem requires quantification of alterations inflicted by water resources development projects. Long records of streamflow data are the first piece of information required in order to enable this analysis. Ungauged catchments located within data-scarce regions lack long records of streamflow data. In this dissertation, a multi-objective framework named Streamflow Prediction under Extreme Data-scarcity (SPED) is proposed for streamflow prediction in ungauged catchments located within large-scale regions of minimal hydrometeorologic observation. Multi-objective nature of SPED allows for balancing runoff efficiency with selection of parameter values that resemble catchment physical characteristics. Uncertain and low-resolution information are incorporated in SPED as soft data along with sparse observations. SPED application in two catchments in southwestern China indicates high runoff efficiency for predictions and good estimation of soil moisture capacity in the catchments. SPED is then slightly modified and tested more comprehensively by application to six catchments with diverse hydroclimatic conditions. SPED performance proves satisfactory where traditional flow prediction approaches fail. SPED also proves comparable or even better than data-intensive approaches. Utility of SPED versus a simpler catchment similarity model for the study of flow regime alteration is pursued next by streamflow prediction in 32 rivers in southwestern China. The results indicate that diversion adversely alters the flow regime of the rivers while direction and pattern of change remain the same regardless of the flow prediction method of choice. However, the results based on SPED consistently indicate more substantial alterations to the flow regime of the rivers after diversion. Finally, the value added by a limited number of streamflow observations to improvement of predictions in an ungauged catchment located within a data-scarce region is studied. The large number of test scenarios indicate that there may be very few near-universal schemes to improve flow predictions in such catchments.
Show less - Date Issued
- 2019
- Identifier
- CFE0007426, ucf:52713
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007426
- Title
- Effluent Water Quality Improvement Using Silt Fences and Stormwater Harvesting.
- Creator
-
Gogo-Abite, Ikiensinma, Chopra, Manoj, Wanielista, Martin, Nam, Boo Hyun, Weishampel, John, University of Central Florida
- Abstract / Description
-
Construction sites are among the most common areas to experience soil erosion and sediment transport due to the mandatory foundation tasks such as excavation and land grubbing. Thus, temporary sediment barriers are installed along the perimeter to prevent sediment transport from the site. Erosion and sediment transport control measures may include, but not limited to, physical and chemical processes such as the use of a silt fence and polyacrylamide product. Runoff from construction sites and...
Show moreConstruction sites are among the most common areas to experience soil erosion and sediment transport due to the mandatory foundation tasks such as excavation and land grubbing. Thus, temporary sediment barriers are installed along the perimeter to prevent sediment transport from the site. Erosion and sediment transport control measures may include, but not limited to, physical and chemical processes such as the use of a silt fence and polyacrylamide product. Runoff from construction sites and other impervious surfaces are routinely discharged into ponds for treatment before being released into a receiving water body. Stormwater harvesting from a pond for irrigation of adjacent lands is promoted as one approach to reducing pond discharge while supplementing valuable potable water used for irrigation. The reduction of pond discharge reduces the mass of pollutants in the discharge. In the dissertation, presented is the investigation of the effectiveness of temporary sediment barriers and then, development of a modeling approach to a stormwater harvesting pond to provide a comprehensive stormwater management pollution reduction assessment tool.The first part of the research presents the investigation of the performance efficiencies of silt fence fabrics in turbidity and sediment concentration removal, and the determination of flow-through-rate on simulated construction sites in real time. Two silt fence fabrics, (1) woven and the other (2) nonwoven were subjected to material index property tests and a series of field-scale tests with different rainfall intensities and events for different embankment slopes on a tilting test-bed. Collected influent and effluent samples were analyzed for sediment concentration and turbidity, and the flow-through-rate for each fabric was evaluated. Test results revealed that the woven and nonwoven silt fence achieved 11 and 56 percent average turbidity reduction efficiency, respectively. Each fabric also achieved 20 and 56 percent average sediment concentration removal efficiency, respectively. Fabric flow-through-rates were functions of the rainfall intensity and embankment slope. The nonwoven fabric exhibited higher flow-through-rates than the woven fabric in both field-scale and laboratory tests.In the second part of the study, a Stormwater Harvesting and Assessment for Reduction of Pollution (SHARP) model was developed to predict operation of wet pond used for stormwater harvesting. The model integrates the interaction of surface water and groundwater in a catchment area. The SHARP model was calibrated and validated with actual pond water elevation data from a stormwater pond at Miramar Lakes, Miramar, Florida. Model evaluation showed adequate prediction of pond water elevation with root mean square error between 0.07 and 0.12 m; mean absolute error was between 0.018 and 0.07 m; and relative index of agreement was between 0.74 and 0.98 for both calibration and validation periods. The SHARP model is capable of assessing harvesting safe-yield and discharge from a pond, including the prediction of the percentage of runoff into a harvesting pond that is not discharged.The combination of silt fence and/or polyacrylamide PAM before stormwater harvesting pond in a treatment train for the reduction of pollutants from construction sites has the potential of significantly exceeding a performance standard of 85 percent reduction typically required by local authorities. In fact, the stringent requirement of equaling pre- and post-development pollutant loading is highly achievable by the treatment train approach. The significant contribution from the integration of the SHARP model to the treatment train is that real-time assessment of pollutant loading reduction by volume can be planned and controlled to achieve target performance standards.
Show less - Date Issued
- 2012
- Identifier
- CFE0004539, ucf:49244
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004539