View All Items
- Title
- AN EMPIRE ON THE BRINK OF DESTRUCTION: THE STABILITY OF THE SELEUCID EMPIRE UNDER ANTIOCHUS IV (175 B.C. - 164 B.C.).
- Creator
-
Campbell, Tyler, Dandrow, Edward, University of Central Florida
- Abstract / Description
-
The Seleucid Empire expanded its territory to stretch from Thrace to India under the leadership of Antiochus III, making it one of the most expansive empires in the Hellenistic World. Antiochus III's subsequent loss at the Battle of Magnesia to Rome in 190 B.C. caused some of the satrapies of the empire to begin to rebel, and has led some historians to believe that the empire began an unrecoverable decline. In this investigation I will argue that the myth of decline in the post-Antiochus III...
Show moreThe Seleucid Empire expanded its territory to stretch from Thrace to India under the leadership of Antiochus III, making it one of the most expansive empires in the Hellenistic World. Antiochus III's subsequent loss at the Battle of Magnesia to Rome in 190 B.C. caused some of the satrapies of the empire to begin to rebel, and has led some historians to believe that the empire began an unrecoverable decline. In this investigation I will argue that the myth of decline in the post-Antiochus III era is invalid through analyzing the stability brought to the empire during the reign of his son, Antiochus IV. An investigation into Antiochus IV's stabilization of the Seleucid Empire has not been completed in English since 1966. Through analyzing his involvement in the southern and eastern regions of the Seleucid Empire as well as the internal reforms a clear picture of Antiochus IV's efforts toward stabilization becomes apparent.
Show less - Date Issued
- 2014
- Identifier
- CFH0004675, ucf:45274
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004675
- Title
- ENHANCING MESSAGE PRIVACY IN WIRED EQUIVALENT PRIVACY.
- Creator
-
Purandare, Darshan, Guha, Ratan, University of Central Florida
- Abstract / Description
-
The 802.11 standard defines the Wired Equivalent Privacy (WEP) and encapsulation of data frames. It is intended to provide data privacy to the level of a wired network. WEP suffered threat of attacks from hackers owing to certain security shortcomings in the WEP protocol. Lately, many new protocols like WiFi Protected Access (WPA), WPA2, Robust Secure Network (RSN) and 802.11i have come into being, yet their implementation is fairly limited. Despite its shortcomings one cannot undermine the...
Show moreThe 802.11 standard defines the Wired Equivalent Privacy (WEP) and encapsulation of data frames. It is intended to provide data privacy to the level of a wired network. WEP suffered threat of attacks from hackers owing to certain security shortcomings in the WEP protocol. Lately, many new protocols like WiFi Protected Access (WPA), WPA2, Robust Secure Network (RSN) and 802.11i have come into being, yet their implementation is fairly limited. Despite its shortcomings one cannot undermine the importance of WEP as it still remains the most widely used system and we chose to address certain security issues and propose some modifications to make it more secure. In this thesis we have proposed a modification to the existing WEP protocol to make it more secure. We achieve Message Privacy by ensuring that the encryption is not breached. The idea is to update the shared secret key frequently based on factors like network traffic and number of transmitted frames. We also develop an Initialization Vector (IV) avoidance algorithm that eliminates IV collision problem. The idea is to partition the IV bits among different wireless hosts in a predetermined manner unique to every node. We can use all possible 224 different IVs without making them predictable for an attacker. Our proposed algorithm eliminates the IV collision ensuring Message Privacy that further strengthens security of the existing WEP. We show that frequent rekeying thwarts all kinds of cryptanalytic attacks on the WEP.
Show less - Date Issued
- 2005
- Identifier
- CFE0000479, ucf:46371
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000479
- Title
- Computational Fluid Dynamics Simulation of United Launch Alliance Delta IV Hydrogen Plume Mitigation Strategies.
- Creator
-
Guimond, Stephen, Kassab, Alain, Divo, Eduardo, Vasu Sumathi, Subith, University of Central Florida
- Abstract / Description
-
During the launch sequence of the United Launch Alliance Delta IV launch vehicle, large amounts of pure hydrogen are introduced into the launch table and ignited by Radial-Outward-Firing-Igniters (ROFIs). This ignition results in a significant flame, or plume, that rises upwards out of the launch table due to buoyancy. The presence of the plume causes increased and unwanted heat loads on the surface of the vehicle. A proposed solution is to add a series of fans and structures to the existing...
Show moreDuring the launch sequence of the United Launch Alliance Delta IV launch vehicle, large amounts of pure hydrogen are introduced into the launch table and ignited by Radial-Outward-Firing-Igniters (ROFIs). This ignition results in a significant flame, or plume, that rises upwards out of the launch table due to buoyancy. The presence of the plume causes increased and unwanted heat loads on the surface of the vehicle. A proposed solution is to add a series of fans and structures to the existing launch table configuration that are designed to inject ambient air in the immediate vicinity of the launch vehicle's nozzles to suppress the plume rise. In addition to the air injection, secondary fan systems can be added around the launch table openings to further suppress the hydrogen plume. The proposed air injection solution is validated by computational fluid dynamics simulations that capture the combustion and compressible flow observed during the Delta IV launch sequence. A solution to the hydrogen plume problem will have direct influence on the efficiency of the launch vehicle: lower heat loads result in thinner vehicle insulation and thus allow for a larger payload mass. Current results show that air injection around the launch vehicle nozzles and air suppression around the launch table openings significantly reduces the size of the plume around the launch vehicle prior to liftoff.
Show less - Date Issued
- 2014
- Identifier
- CFE0005500, ucf:50345
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005500
- Title
- EVALUATION OF OXIDIZED MEDIA FILTRATION PROCESSES FOR THE TREATMENT OF HYDROGEN SULFIDE IN GROUNDWATER.
- Creator
-
Trupiano, Vito, Duranceau, Steven, University of Central Florida
- Abstract / Description
-
This study evaluated alternative sulfide treatment processes for potable water systems that rely on groundwater supplies. Research for this study was conducted at the Imperial Lakes (IL) and Turner Road (TR) water treatment plants (WTPs) in Polk County, Florida. These WTPs are in the process of refurbishment and expansion, and will require the installation of a new groundwater well. The IL and TR WTPs both rely upon groundwater sources that contain total sulfide at concentrations ranging from...
Show moreThis study evaluated alternative sulfide treatment processes for potable water systems that rely on groundwater supplies. Research for this study was conducted at the Imperial Lakes (IL) and Turner Road (TR) water treatment plants (WTPs) in Polk County, Florida. These WTPs are in the process of refurbishment and expansion, and will require the installation of a new groundwater well. The IL and TR WTPs both rely upon groundwater sources that contain total sulfide at concentrations ranging from 1.4 to 2.6 mg/L. Sulfide is a concern because if left untreated it can impact finished water quality, corrosivity, create undesirable taste and odor, and oxidize to form visible turbidity. For this reason, the raw water will require treatment per Florida Department of Environmental Protection (FDEP) "Sulfide Rule" 62-555.315(5)(a). This rule does not allow the use of conventional tray aeration (currently in use at the IL and TR WTPs) for wells that have significant total sulfide content (0.6 to 3.0 mg/L). This research was commissioned because the potential water treatment method identified in the Sulfide Rule (i.e. forced-draft aeration) would not adequately fit within the confines of the existing sites and would pose undue burden to neighboring residents. In addition, an effective sulfide treatment process was desired that offered a low profile, did not necessitate the need for additional complex chemical feed systems, minimized the extent of electrical infrastructure upgrades, and was inexpensive to construct and operate. To meet these goals, several alternative technologies were evaluated at the desktop and bench-scale; these included anion exchange, various oxidation methods, and alternative media filtration processes. From that effort, several processes were selected for evaluation at the pilot scale: bleach (NaOCl) oxidation preceding electromedia filtration; manganese (IV) oxide (MnO2) filtration continuously regenerated with bleach; and ferrate (Fe(VI)) oxidation. Electromedia and MnO2 filtration were shown to be effective for total sulfide treatment. Both processes reduced total sulfide content to below detection levels (< 0.1 mg/L) for groundwater supplies containing as much as 2.6 mg/L of total sulfide. The use of bleach oxidation ahead of media filtration also produced finished water with low turbidity (< 1.0 NTU) as compared to conventional tray aeration and chlorination processes (6-16 NTU, as observed in this study). It was determined that the media filtration approach (electromedia and MnO2) was effective for sulfide treatment and met the County's site objectives established at the outset of the project. Ferrate was also shown to reduce total sulfide content to below detection levels (< 0.1 mg/L) for groundwater supplies containing as much as 2.6 mg/L of total sulfide. An opinion of probable capital costs for installing a sulfide oxidation/filtration process at either the Imperial Lakes or Turner Road WTP was estimated to range from roughly $830,000 to $1,100,000. That equates to a $/kgal capital cost of $0.10 to $0.32 (at 8% for 20 years). An opinion of annual probable bleach chemical costs was estimated to range from $3,500 to $9,800 for the IL WTP and $3,500 to $5,800 for the TR WTP.
Show less - Date Issued
- 2010
- Identifier
- CFE0003370, ucf:48432
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003370
- Title
- DESIGN AND CHARACTERIZATION OF NOVELDEVICES FOR NEW GENERATION OF ELECTROSTATICDISCHARGE (ESD) PROTECTION STRUCTURES.
- Creator
-
SALCEDO, Javier, Liou, Juin, University of Central Florida
- Abstract / Description
-
The technology evolution and complexity of new circuit applications involve emerging reliability problems and even more sensitivity of integrated circuits (ICs) to electrostatic discharge (ESD)-induced damage. Regardless of the aggressive evolution in downscaling and subsequent improvement in applications' performance, ICs still should comply with minimum standards of ESD robustness in order to be commercially viable. Although the topic of ESD has received attention industry-wide, the...
Show moreThe technology evolution and complexity of new circuit applications involve emerging reliability problems and even more sensitivity of integrated circuits (ICs) to electrostatic discharge (ESD)-induced damage. Regardless of the aggressive evolution in downscaling and subsequent improvement in applications' performance, ICs still should comply with minimum standards of ESD robustness in order to be commercially viable. Although the topic of ESD has received attention industry-wide, the design of robust protection structures and circuits remains challenging because ESD failure mechanisms continue to become more acute and design windows less flexible. The sensitivity of smaller devices, along with a limited understanding of the ESD phenomena and the resulting empirical approach to solving the problem have yielded time consuming, costly and unpredictable design procedures. As turnaround design cycles in new technologies continue to decrease, the traditional trial-and-error design strategy is no longer acceptable, and better analysis capabilities and a systematic design approach are essential to accomplish the increasingly difficult task of adequate ESD protection-circuit design. This dissertation presents a comprehensive design methodology for implementing custom on-chip ESD protection structures in different commercial technologies. First, the ESD topic in the semiconductor industry is revised, as well as ESD standards and commonly used schemes to provide ESD protection in ICs. The general ESD protection approaches are illustrated and discussed using different types of protection components and the concept of the ESD design window. The problem of implementing and assessing ESD protection structures is addressed next, starting from the general discussion of two design methods. The first ESD design method follows an experimental approach, in which design requirements are obtained via fabrication, testing and failure analysis. The second method consists of the technology computer aided design (TCAD)-assisted ESD protection design. This method incorporates numerical simulations in different stages of the ESD design process, and thus results in a more predictable and systematic ESD development strategy. Physical models considered in the device simulation are discussed and subsequently utilized in different ESD designs along this study. The implementation of new custom ESD protection devices and a further integration strategy based on the concept of the high-holding, low-voltage-trigger, silicon controlled rectifier (SCR) (HH-LVTSCR) is demonstrated for implementing ESD solutions in commercial low-voltage digital and mixed-signal applications developed using complementary metal oxide semiconductor (CMOS) and bipolar CMOS (BiCMOS) technologies. This ESD protection concept proposed in this study is also successfully incorporated for implementing a tailored ESD protection solution for an emerging CMOS-based embedded MicroElectroMechanical (MEMS) sensor system-on-a-chip (SoC) technology. Circuit applications that are required to operate at relatively large input/output (I/O) voltage, above/below the VDD/VSS core circuit power supply, introduce further complications in the development and integration of ESD protection solutions. In these applications, the I/O operating voltage can extend over one order of magnitude larger than the safe operating voltage established in advanced technologies, while the IC is also required to comply with stringent ESD robustness requirements. A practical TCAD methodology based on a process- and device- simulation is demonstrated for assessment of the device physics, and subsequent design and implementation of custom P1N1-P2N2 and coupled P1N1-P2N2//N2P3-N3P1 silicon controlled rectifier (SCR)-type devices for ESD protection in different circuit applications, including those applications operating at I/O voltage considerably above/below the VDD/VSS. Results from the TCAD simulations are compared with measurements and used for developing technology- and circuit-adapted protection structures, capable of blocking large voltages and providing versatile dual-polarity symmetric/asymmetric S-type current-voltage characteristics for high ESD protection. The design guidelines introduced in this dissertation are used to optimize and extend the ESD protection capability in existing CMOS/BiCMOS technologies, by implementing smaller and more robust single- or dual-polarity ESD protection structures within the flexibility provided in the specific fabrication process. The ESD design methodologies and characteristics of the developed protection devices are demonstrated via ESD measurements obtained from fabricated stand-alone devices and on-chip ESD protections. The superior ESD protection performance of the devices developed in this study is also successfully verified in IC applications where the standard ESD protection approaches are not suitable to meet the stringent area constraint and performance requirement.
Show less - Date Issued
- 2006
- Identifier
- CFE0001213, ucf:46942
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001213