Current Search: Image Registration (x)
View All Items
- Title
- DEBRIS TRACKING IN A SEMISTABLE BACKGROUND.
- Creator
-
Vanumamalai, KarthikKalathi, Kasparis, Takis, University of Central Florida
- Abstract / Description
-
Object Tracking plays a very pivotal role in many computer vision applications such as video surveillance, human gesture recognition and object based video compressions such as MPEG-4. Automatic detection of any moving object and tracking its motion is always an important topic of computer vision and robotic fields. This thesis deals with the problem of detecting the presence of debris or any other unexpected objects in footage obtained during spacecraft launches, and this poses a challenge...
Show moreObject Tracking plays a very pivotal role in many computer vision applications such as video surveillance, human gesture recognition and object based video compressions such as MPEG-4. Automatic detection of any moving object and tracking its motion is always an important topic of computer vision and robotic fields. This thesis deals with the problem of detecting the presence of debris or any other unexpected objects in footage obtained during spacecraft launches, and this poses a challenge because of the non-stationary background. When the background is stationary, moving objects can be detected by frame differencing. Therefore there is a need for background stabilization before tracking any moving object in the scene. Here two problems are considered and in both footage from Space shuttle launch is considered with the objective to track any debris falling from the Shuttle. The proposed method registers two consecutive frames using FFT based image registration where the amount of transformation parameters (translation, rotation) is calculated automatically. This information is the next passed to a Kalman filtering stage which produces a mask image that is used to find high intensity areas which are of potential interest.
Show less - Date Issued
- 2005
- Identifier
- CFE0000886, ucf:46628
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000886
- Title
- HYBRID AND HIERARCHICAL IMAGE REGISTRATION TECHNIQUES.
- Creator
-
Xu, Dongjiang, Kasparis, Takis, University of Central Florida
- Abstract / Description
-
A large number of image registration techniques have been developed for various types of sensors and applications, with the aim to improve the accuracy, computational complexity, generality, and robustness. They can be broadly classified into two categories: intensity-based and feature-based methods. The primary drawback of the intensity-based approaches is that it may fail unless the two images are misaligned by a moderate difference in scale, rotation, and translation. In addition,...
Show moreA large number of image registration techniques have been developed for various types of sensors and applications, with the aim to improve the accuracy, computational complexity, generality, and robustness. They can be broadly classified into two categories: intensity-based and feature-based methods. The primary drawback of the intensity-based approaches is that it may fail unless the two images are misaligned by a moderate difference in scale, rotation, and translation. In addition, intensity-based methods lack the robustness in the presence of non-spatial distortions due to different imaging conditions between images. In this dissertation, the image registration is formulated as a two-stage hybrid approach combining both an initial matching and a final matching in a coarse-to-fine manner. In the proposed hybrid framework, the initial matching algorithm is applied at the coarsest scale of images, where the approximate transformation parameters could be first estimated. Subsequently, the robust gradient-based estimation algorithm is incorporated into the proposed hybrid approach using a multi-resolution scheme. Several novel and effective initial matching algorithms have been proposed for the first stage. The variations of the intensity characteristics between images may be large and non-uniform because of non-spatial distortions. Therefore, in order to effectively incorporate the gradient-based robust estimation into our proposed framework, one of the fundamental questions should be addressed: what is a good image representation to work with using gradient-based robust estimation under non-spatial distortions. With the initial matching algorithms applied at the highest level of decomposition, the proposed hybrid approach exhibits superior range of convergence. The gradient-based algorithms in the second stage yield a robust solution that precisely registers images with sub-pixel accuracy. A hierarchical iterative searching further enhances the convergence range and rate. The simulation results demonstrated that the proposed techniques provide significant benefits to the performance of image registration.
Show less - Date Issued
- 2004
- Identifier
- CFE0000317, ucf:46294
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000317
- Title
- Super Resolution of Wavelet-Encoded Images and Videos.
- Creator
-
Atalay, Vildan, Foroosh, Hassan, Bagci, Ulas, Hughes, Charles, Pensky, Marianna, University of Central Florida
- Abstract / Description
-
In this dissertation, we address the multiframe super resolution reconstruction problem for wavelet-encoded images and videos. The goal of multiframe super resolution is to obtain one or more high resolution images by fusing a sequence of degraded or aliased low resolution images of the same scene. Since the low resolution images may be unaligned, a registration step is required before super resolution reconstruction. Therefore, we first explore in-band (i.e. in the wavelet-domain) image...
Show moreIn this dissertation, we address the multiframe super resolution reconstruction problem for wavelet-encoded images and videos. The goal of multiframe super resolution is to obtain one or more high resolution images by fusing a sequence of degraded or aliased low resolution images of the same scene. Since the low resolution images may be unaligned, a registration step is required before super resolution reconstruction. Therefore, we first explore in-band (i.e. in the wavelet-domain) image registration; then, investigate super resolution.Our motivation for analyzing the image registration and super resolution problems in the wavelet domain is the growing trend in wavelet-encoded imaging, and wavelet-encoding for image/video compression. Due to drawbacks of widely used discrete cosine transform in image and video compression, a considerable amount of literature is devoted to wavelet-based methods. However, since wavelets are shift-variant, existing methods cannot utilize wavelet subbands efficiently. In order to overcome this drawback, we establish and explore the direct relationship between the subbands under a translational shift, for image registration and super resolution. We then employ our devised in-band methodology, in a motion compensated video compression framework, to demonstrate the effective usage of wavelet subbands.Super resolution can also be used as a post-processing step in video compression in order to decrease the size of the video files to be compressed, with downsampling added as a pre-processing step. Therefore, we present a video compression scheme that utilizes super resolution to reconstruct the high frequency information lost during downsampling. In addition, super resolution is a crucial post-processing step for satellite imagery, due to the fact that it is hard to update imaging devices after a satellite is launched. Thus, we also demonstrate the usage of our devised methods in enhancing resolution of pansharpened multispectral images.
Show less - Date Issued
- 2017
- Identifier
- CFE0006854, ucf:51744
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006854
- Title
- SUB-PIXEL REGISTRATION IN COMPUTATIONAL IMAGING AND APPLICATIONS TO ENHANCEMENT OF MAXILLOFACIAL CT DATA.
- Creator
-
Balci, Murat, Foroosh, Hassan, University of Central Florida
- Abstract / Description
-
In computational imaging, data acquired by sampling the same scene or object at different times or from different orientations result in images in different coordinate systems. Registration is a crucial step in order to be able to compare, integrate and fuse the data obtained from different measurements. Tomography is the method of imaging a single plane or slice of an object. A Computed Tomography (CT) scan, also known as a CAT scan (Computed Axial Tomography scan), is a Helical Tomography,...
Show moreIn computational imaging, data acquired by sampling the same scene or object at different times or from different orientations result in images in different coordinate systems. Registration is a crucial step in order to be able to compare, integrate and fuse the data obtained from different measurements. Tomography is the method of imaging a single plane or slice of an object. A Computed Tomography (CT) scan, also known as a CAT scan (Computed Axial Tomography scan), is a Helical Tomography, which traditionally produces a 2D image of the structures in a thin section of the body. It uses X-ray, which is ionizing radiation. Although the actual dose is typically low, repeated scans should be limited. In dentistry, implant dentistry in specific, there is a need for 3D visualization of internal anatomy. The internal visualization is mainly based on CT scanning technologies. The most important technological advancement which dramatically enhanced the clinician's ability to diagnose, treat, and plan dental implants has been the CT scan. Advanced 3D modeling and visualization techniques permit highly refined and accurate assessment of the CT scan data. However, in addition to imperfections of the instrument and the imaging process, it is not uncommon to encounter other unwanted artifacts in the form of bright regions, flares and erroneous pixels due to dental bridges, metal braces, etc. Currently, removing and cleaning up the data from acquisition backscattering imperfections and unwanted artifacts is performed manually, which is as good as the experience level of the technician. On the other hand the process is error prone, since the editing process needs to be performed image by image. We address some of these issues by proposing novel registration methods and using stonecast models of patient's dental imprint as reference ground truth data. Stone-cast models were originally used by dentists to make complete or partial dentures. The CT scan of such stone-cast models can be used to automatically guide the cleaning of patients' CT scans from defects or unwanted artifacts, and also as an automatic segmentation system for the outliers of the CT scan data without use of stone-cast models. Segmented data is subsequently used to clean the data from artifacts using a new proposed 3D inpainting approach.
Show less - Date Issued
- 2006
- Identifier
- CFE0001443, ucf:47040
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001443
- Title
- Visionary Ophthalmics: Confluence of Computer Vision and Deep Learning for Ophthalmology.
- Creator
-
Morley, Dustin, Foroosh, Hassan, Bagci, Ulas, Gong, Boqing, Mohapatra, Ram, University of Central Florida
- Abstract / Description
-
Ophthalmology is a medical field ripe with opportunities for meaningful application of computer vision algorithms. The field utilizes data from multiple disparate imaging techniques, ranging from conventional cameras to tomography, comprising a diverse set of computer vision challenges. Computer vision has a rich history of techniques that can adequately meet many of these challenges. However, the field has undergone something of a revolution in recent times as deep learning techniques have...
Show moreOphthalmology is a medical field ripe with opportunities for meaningful application of computer vision algorithms. The field utilizes data from multiple disparate imaging techniques, ranging from conventional cameras to tomography, comprising a diverse set of computer vision challenges. Computer vision has a rich history of techniques that can adequately meet many of these challenges. However, the field has undergone something of a revolution in recent times as deep learning techniques have sprung into the forefront following advances in GPU hardware. This development raises important questions regarding how to best leverage insights from both modern deep learning approaches and more classical computer vision approaches for a given problem. In this dissertation, we tackle challenging computer vision problems in ophthalmology using methods all across this spectrum. Perhaps our most significant work is a highly successful iris registration algorithm for use in laser eye surgery. This algorithm relies on matching features extracted from the structure tensor and a Gabor wavelet (-) a classically driven approach that does not utilize modern machine learning. However, drawing on insight from the deep learning revolution, we demonstrate successful application of backpropagation to optimize the registration significantly faster than the alternative of relying on finite differences. Towards the other end of the spectrum, we also present a novel framework for improving RANSAC segmentation algorithms by utilizing a convolutional neural network (CNN) trained on a RANSAC-based loss function. Finally, we apply state-of-the-art deep learning methods to solve the problem of pathological fluid detection in optical coherence tomography images of the human retina, using a novel retina-specific data augmentation technique to greatly expand the data set. Altogether, our work demonstrates benefits of applying a holistic view of computer vision, which leverages deep learning and associated insights without neglecting techniques and insights from the previous era.
Show less - Date Issued
- 2018
- Identifier
- CFE0007058, ucf:52001
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007058
- Title
- A Decision Support Tool for Video Retinal Angiography.
- Creator
-
Laha, Sumit, Bagci, Ulas, Foroosh, Hassan, Song, Sam, University of Central Florida
- Abstract / Description
-
Fluorescein angiogram (FA) is a medical procedure that helps the ophthalmologists to monitor the status of the retinal blood vessels and to diagnose proper treatment. This research is motivated by the necessity of blood vessel segmentation of the retina. Retinal vessel segmentation has been a major challenge and has long drawn the attention of researchers for decades due to the presence of complex blood vessels with varying size, shape, angles and branching pattern of vessels, and non-uniform...
Show moreFluorescein angiogram (FA) is a medical procedure that helps the ophthalmologists to monitor the status of the retinal blood vessels and to diagnose proper treatment. This research is motivated by the necessity of blood vessel segmentation of the retina. Retinal vessel segmentation has been a major challenge and has long drawn the attention of researchers for decades due to the presence of complex blood vessels with varying size, shape, angles and branching pattern of vessels, and non-uniform illumination and huge anatomical variability between subjects. In this thesis, we introduce a new computational tool that combines deep learning based machine learning algorithm and a signal processing based video magnification method to support physicians in analyzing and diagnosing retinal angiogram videos for the first time in the literature.The proposed approach has a pipeline-based architecture containing three phases - image registration for large motion removal from video angiogram, retinal vessel segmentation and video magnification based on the segmented vessels. In image registration phase, we align distorted frames in the FA video using rigid registration approaches. In the next phase, we use baseline capsule based neural networks for retinal vessel segmentation in comparison with the state-of-the-art methods. We move away from traditional convolutional network approaches to capsule networks in this work. This is because, despite being widely used in different computer vision applications, convolutional neural networks suffer from learning ability to understand the object-part relationships, have high computational times due to additive nature of neurons and, loose information in the pooling layer. Although having these drawbacks, we use deep learning methods like U-Net and Tiramisu to measure the performance and accuracy of SegCaps. Lastly, we apply Eulerian video magnification to magnify the subtle changes in the retinal video. In this phase, magnification is applied to segmented videos to visualize the flow of blood in the retinal vessels.
Show less - Date Issued
- 2018
- Identifier
- CFE0007342, ucf:52125
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007342