Current Search: InGaAs (x)
-
-
Title
-
STUDY OF INGAAS LDMOS FOR POWER CONVERSION APPLICATIONS.
-
Creator
-
Liu, Yidong, Yuan, Jiann S., University of Central Florida
-
Abstract / Description
-
In this work an n-channel In0.65Ga0.35As LDMOS with Al2O3 as gate dielectric is investigated. Instead of using traditional Si process for LDMOS, we suggest In0.65Ga0.35As as substitute material due to its higher electron mobility and its promising for power applications. The proposed 0.5-μm channel-length LDMOS cell is studied through device TCAD simulation tools. Due to different gate dielectric, comprehensive comparisons between In0.65Ga0.35As LDMOS and Si LDMOS are made in two ways,...
Show moreIn this work an n-channel In0.65Ga0.35As LDMOS with Al2O3 as gate dielectric is investigated. Instead of using traditional Si process for LDMOS, we suggest In0.65Ga0.35As as substitute material due to its higher electron mobility and its promising for power applications. The proposed 0.5-μm channel-length LDMOS cell is studied through device TCAD simulation tools. Due to different gate dielectric, comprehensive comparisons between In0.65Ga0.35As LDMOS and Si LDMOS are made in two ways, structure with the same cross-sectional dimension, and structure with different thickness of gate dielectric to achieve the same gate capacitance. The on-resistance of the new device shows a big improvement with no degradation on breakdown voltage over traditional device. Also it is indicated from these comparisons that the figure of merit(FOM) Ron·Qg of In0.65Ga0.35As LDMOS shows an average of 91.9% improvement to that of Si LDMOS. To further explore the benefit of using In0.65Ga0.35As LDMOS as switch in power applications, DC-DC buck converter is utilized to observe the performance of LDMOS in terms of power efficiency. The LDMOS performance is experimented with operation frequency of the circuit sweeping in the range from 100 KHz to 100 MHz. It turns out InGaAs LDMOS is good candidate for power applications.
Show less
-
Date Issued
-
2009
-
Identifier
-
CFE0002686, ucf:48217
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002686
-
-
Title
-
TUNABLE TERAHERTZ DETECTORS BASED ON PLASMON EXCIATION IN TWO DIMENSIONAL ELECTRON GASES IN INGAAS/INP AND ALGAN/GAN HEMT.
-
Creator
-
Saxena, Himanshu, Peale, Robert, University of Central Florida
-
Abstract / Description
-
The observation of voltage-tunable plasmon resonances in the terahertz range in two dimensional electron gas (2-deg) of a high electron mobility transistor (HEMT) fabricated from the InGaAs/InP and AlGaN/GaN materials systems is reported. The devices were fabricated from a commercial HEMT wafer by depositing source and drain contacts using standard photolithography process and a semi-transparent gate contact that consisted of a 0.5 µm period transmission grating formed by electron-beam...
Show moreThe observation of voltage-tunable plasmon resonances in the terahertz range in two dimensional electron gas (2-deg) of a high electron mobility transistor (HEMT) fabricated from the InGaAs/InP and AlGaN/GaN materials systems is reported. The devices were fabricated from a commercial HEMT wafer by depositing source and drain contacts using standard photolithography process and a semi-transparent gate contact that consisted of a 0.5 µm period transmission grating formed by electron-beam lithography. Narrow-band resonant absorption of THz radiation was observed in transmission in the frequency range 10100 cm-1. The resonance frequency depends on the gate voltage-tuned sheet-charge density of the 2deg. The fundamental and higher resonant harmonics were observed to shift towards lower frequencies with the implementation of negative gate bias. The theory of interaction of sub millimeter waves with 2deg through corrugated structure on top has been applied to calculate and understand the phenomena of resonant plasmon excitations. The observed separation of resonance fundamental from its harmonics and their shift with gate bias follows theory, although the absolute frequencies are lower by about a factor of 2-3 in InGaAs/InP system. However, calculated values match much better with AlGaN/GaN system.
Show less
-
Date Issued
-
2009
-
Identifier
-
CFE0002912, ucf:47994
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002912