Current Search: J-aggregations (x)
View All Items
- Title
- The Formation and Characterization of Mesoscopic J- and H-aggregates with Controlled Morphologies by the Co- and Templated Assembly of Cyanine Dyes.
- Creator
-
Rhodes, Samuel, Fang, Jiyu, Jiang, Tengfei, Dong, Yajie, Florczyk, Stephen, Pang, Sean, University of Central Florida
- Abstract / Description
-
The supramolecular aggregates of ?-conjugated molecules have become an area of great interest to the scientific community in recent years for their promise in biosensors and optoelectronic devices. Among various supramolecular aggregates, J- and H-aggregates of ?-conjugated dye molecules are particularly interesting because of their unique optical and excitonic properties that are not given by individual molecules. H-aggregates are composed of dye molecules in a face-to-face stacking, giving...
Show moreThe supramolecular aggregates of ?-conjugated molecules have become an area of great interest to the scientific community in recent years for their promise in biosensors and optoelectronic devices. Among various supramolecular aggregates, J- and H-aggregates of ?-conjugated dye molecules are particularly interesting because of their unique optical and excitonic properties that are not given by individual molecules. H-aggregates are composed of dye molecules in a face-to-face stacking, giving rise to a blue-shifted absorption band compared with the monomer band and a strong emission quenching. In contrast, J-aggregates represent an edge-to-edge stacking of dye molecules, showing a red-shifted absorption band with respect to the monomer band and a strong fluorescence emission. However, the use of J- and H-aggregates in biosensors and optoelectronic devices remains a challenge because of the difficulty of controlling their sizes and morphologies. In this dissertation, we develop two different paths for controlling the size and morphology of J- and H-aggregates. First, we show that the co-assembly of cyanine dyes and lithocholic acid (LCA) in ammonia solution can lead to the formation of mesoscopic J- and H-aggregate fibers, depending on the condition under which the co-assembly occurs. Second, we report the formation of mesoscopic J-aggregate tubes by using the preformed LCA tubes as a template. The structure, optical, and electronic properties of these J- and H-aggregate fiber and tubes are studied as a function of temperature. Finally, we exploit their applications as photo-induced electron transfer supramolecular probes for the detection of dopamine, an important neurotransmitter in central and peripheral nervous systems.
Show less - Date Issued
- 2018
- Identifier
- CFE0007412, ucf:52718
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007412
- Title
- Aggregation of Squaraine Dye Derivatives in Solid State Spin-coated Thin Films.
- Creator
-
Daoudi, Mohammed, Belfield, Kevin, Miles, Delbert, Campiglia, Andres, Bhattacharya, Aniket, Rex, Matthew, University of Central Florida
- Abstract / Description
-
Squaraine dyes have been the subject of intensive studies due their unusual electronic properties that make them good candidates for a wide range of applications in various technological fields. They are particularly promising in nonlinear optics, bioimaging for labeling and sensing of biomolecules, as sensitizers for solar energy harvesting in solar cells and organic photovoltaics, two-photon absorbing materials, near-infrared (NIR) emitting fluorescent probes, second harmonic generation...
Show moreSquaraine dyes have been the subject of intensive studies due their unusual electronic properties that make them good candidates for a wide range of applications in various technological fields. They are particularly promising in nonlinear optics, bioimaging for labeling and sensing of biomolecules, as sensitizers for solar energy harvesting in solar cells and organic photovoltaics, two-photon absorbing materials, near-infrared (NIR) emitting fluorescent probes, second harmonic generation organic dyes, and sensitizers for photodynamic therapy among others. In this dissertation, the aggregation behaviors and features of several squaraine dye derivatives in solid state thin films were studied and reported.In the first chapter of the dissertation, three squaraine dye derivatives with two and four hydroxy groups and with different N-alkyl amino donor substituents were synthesized and used as models to study aggregation behavior. Their UV-vis absorption, thermal properties, and photoluminescence properties were determined. The models with four hydroxy substituents exhibited higher thermal stability and melt at higher temperature compared to the dye with only two hydroxy substituents due to increased hydrogen bonding. The UV-vis absorption and photoluminescence properties in liquid solution at room temperature were found to be similar.In the second chapter, the squaraine dyes, 2,4-bis [4-(N,N-di-n-pentylamino)-2-hydroxyphenyl] squaraine [SQC5(OH)2], 2,4-bis [4-(N,N-di-n-pentylamino)-2,4-hydroxyphenyl] squaraine [SQC5(OH)4 n], and 2,4-bis [4-(N,N-di-isopentylamino)-2,4-hydroxyphenyl] squaraine [SQC5(OH)4 b], where (")n(") and (")b(") stand for normal or linear and branched alkyl groups, respectively, were investigated to study their aggregation in solid state thin film form using UV-vis absorption spectroscopy. The investigation revealed significant differences in aggregation behaviors and features. The dye SQC5(OH)2 mainly exhibited J-type aggregation with an intense absorption band in the NIR region. In contrast, the SQC5(OH)4 n and SQC5(OH)4 b compounds mainly exhibited H-type aggregation, characterized by less intense and blue shifted absorption bands. The third chapter presents the kinetic study conducted on the squaraine dye derivative 2,4-bis [4-(N,N-di-n-pentylamino)-2-hydroxyphenyl] squaraine [SQC5(OH)2] in solid state spin-coated thin films. The study revealed the formation of J-aggregates with bands at 767 nm at room temperature. This aggregate was temperature dependent. It was transformed into H-aggregates as the temperature increased. The activation energy of the decay (transformation) process was found to be 91.2 kJ. The values of ?H and ?S are 88.4 kJ/mol and 48.2 J/K.mol, respectively, indicating the J-aggregate of SQC5(OH)2 was a kinetic product while the H-aggregate was thermondynamically more stable.
Show less - Date Issued
- 2015
- Identifier
- CFE0005778, ucf:50064
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005778
- Title
- SYNTHESIS AND APPLICATIONS OF RING OPENING METATHESIS POLYMERIZATION BASED FUNCTIONAL BLOCK COPOLYMERS.
- Creator
-
Biswas, Sanchita, Belfield, Kevin, University of Central Florida
- Abstract / Description
-
Ring opening metathesis polymerization (ROMP) is established as one of the efficient controlled living polymerization methods which have various applications in polymer science and technology fields. The research presented in this dissertation addresses several applications of multifunctional well-defined norbornene-based block copolymers synthesized by ROMP using ruthenium-based Grubbs catalysts. These novel block copolymers were applied to stabilize maghemite nanoparticles, creating the...
Show moreRing opening metathesis polymerization (ROMP) is established as one of the efficient controlled living polymerization methods which have various applications in polymer science and technology fields. The research presented in this dissertation addresses several applications of multifunctional well-defined norbornene-based block copolymers synthesized by ROMP using ruthenium-based Grubbs catalysts. These novel block copolymers were applied to stabilize maghemite nanoparticles, creating the superparamagnetic polymeric nanocomposites. The J-aggregation properties of the porphyrin dyes were improved via self-assembly with a customized norbornene polymer. Novel multimodal copolymer probes were synthesized for two-photon fluorescence integrin-targeted bioimaging. In Chapter 1 a brief overview of ROMP along with ruthenium metal catalysts and selected applications of the polymers related to this research is presented. Superparamagnetic maghemite nanoparticles are important in biotechnology fields, such as enhanced magnetic resonance imaging (MRI), magnetically controlled drug delivery, and biomimetics. However, cluster formation and eventual loss of nano-dimensions is a major obstacle for these materials. Chapter 2 presents a solution to this problem through nanoparticles stabiulized in a polymer matrix. The synthesis and chracterization of novel diblock copolymers, consisting of epoxy pendant anchoring groups to chelate maghemite nanoparticles and steric stabilizing groups, as well as generation of nanocomposites and their characterization, including surface morphologies and magnetic properties, is discussed in Chapter 2. In Chapter 3, further improvement of the nanocomposites by ligand modification and the synthesis of pyrazole-templated diblock copolymers and their impact to stabilize the maghemite nanocomposite are presented. Additionally, the organic soluble magnetic nanocomposites with high magnetizations were encapsulated in an amphiphilic copolymer and dispersed in water to assess their water stability by TEM. To gain a preliminary measure of biocopatibility of the micelle-encapsulated polymeric magnetic nanocomposites, cell-viability was determined. In Chapter 4, aggregation behaviors of two porphyrin-based dyes were investigated. A new amphiphilic homopolymer containing secondary amine moieties was synthesized and characterized. In low pH, the polymer became water soluble and initiated the stable J-aggregation of the porphyrin. Spectroscopic data supported the aggregation behavior. Two photon fluorescence microscopy (2PFM) has become a powerful technique in bioimaging for non-invasive imaging and potential diagnosis and treatment of a number of diseases via excitation in the near-infrared (NIR) region. The fluorescence emission upon two-photon absorption (2PA) is quadratically dependent with the intensity of excitation light (compared to the linear dependence in the case of one-photon absoprtion), offering several advantages for biological applications over the conventional one-photon absorption (1PA) due to the high 3D spatial resolution that is confined near the focal point along with less photodamage and interference from the biological tissues at longer wavelength (~700-900 nm). Hence, efficient 2PA absorbing fluorophores conjugated with specific targeting moieties provides an even better bioimaging probe to diagnose desired cellular processes or areas of interest The αVβ3 integrin adhesive protein plays a significant role in regulating angiogenesis and is over-expressed in uncontrolled neovascularization during tumor growth, invasion, and metastasis. Cyclic-RGD peptides are well-known antagonists of αVβ3 integrin which suppress the angiogenesis process, thus preventing tumor growth. In Chapter 5 the synthesis, photophysical studies and bioimaging is reported for a versatile norbornene-based block copolymer multifunctional scaffold containing biocompatible (PEG), two-photon fluorescent (fluorenyl), and targeting (cyclic RGD peptide) moieties. This water-soluble polymeric multi scaffold probe with negligible cytotoxicity exhibited much stronger fluorescence and high localization in U87MG cells (that overexpress integrin) compared to control MCF7 cells. The norbornene-based polymers and copolymers have quite remarkable versatility for the creation of advanced functional magnetic, photonic, and biophotonic materials.
Show less - Date Issued
- 2010
- Identifier
- CFE0003065, ucf:48296
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003065
- Title
- Squaraine dyes, design and synthesis for various functional materials applications.
- Creator
-
Zhang, Yuanwei, Belfield, Kevin, Campiglia, Andres, Zou, Shengli, Frazer, Andrew, Cheng, Zixi, University of Central Florida
- Abstract / Description
-
This dissertation contains the synthesis and characterization of squaraine based new functional materials. In the first part of this thesis work, a water soluble benzothiazolium squaraine dye was synthesized with pyridium pendents, and controlled aggregation properties were achieved. After formation of partially reversible J-aggregation on a polyelectrolyte (poly(acryl acid) sodium salt) template, the nonlinear, two-photon absorption cross section per repeat unit was found to be above 30-fold...
Show moreThis dissertation contains the synthesis and characterization of squaraine based new functional materials. In the first part of this thesis work, a water soluble benzothiazolium squaraine dye was synthesized with pyridium pendents, and controlled aggregation properties were achieved. After formation of partially reversible J-aggregation on a polyelectrolyte (poly(acryl acid) sodium salt) template, the nonlinear, two-photon absorption cross section per repeat unit was found to be above 30-fold enhanced compared with nonaggregate and/or low aggregates. Using a similar strategy, sulfonate anions were introduced into the squaraine structure, and the resulting compounds exhibited good water solubilities. A 'turn on' fluorescence was discovered when these squaraine dyes interacted with bovine serum albumin (BSA), titration studies by BSA site selective reagents show these squaraine dyes can bind to both site I and II of BSA, with a preference of site II. Introduction of these squaraine dyes to BSA nanoparticles generated near-IR protein nano fabricates, and cell images were collected. Metal sensing properties were also studied using the sulfonates containing a benzoindolium squaraine dye, and the linear response of the absorption of the squaraine dye to the concentration of Hg2+ makes it a good heavy metal-selective sensing material that can be carried out in aqueous solution. Later, a squaraine scaffold was attached to deoxyribonucleosides by Sonogashira coupling reactions, in which the reaction conditions were modified. Iodo-deoxyuridine and bromo-deoxyadenosine were used as the deoxyribonucleosides building blocks, and the resulting squaraine dye-modified deoxyribonucleosides exhibited near-IR absorption and emission properties due to the squaraine chromophore. Interestingly, these non-natural deoxyribonucleosdies showed viscosity dependent photophysical properties, which make them nice candidates for fluorescence viscosity sensors at the cellular level. After incubation with cells, these viscosity sensors were readily uptaken by cell, and images were obtained showing regions of high viscosity in cells.
Show less - Date Issued
- 2013
- Identifier
- CFE0005451, ucf:50369
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005451