Current Search: Lexical Knowledge (x)
View All Items
- Title
- THE ACQUISITION OF LEXICAL KNOWLEDGE FROM THE WEB FOR ASPECTS OF SEMANTIC INTERPRETATION.
- Creator
-
Schwartz, Hansen, Gomez, Fernando, University of Central Florida
- Abstract / Description
-
This work investigates the effective acquisition of lexical knowledge from the Web to perform semantic interpretation. The Web provides an unprecedented amount of natural language from which to gain knowledge useful for semantic interpretation. The knowledge acquired is described as common sense knowledge, information one uses in his or her daily life to understand language and perception. Novel approaches are presented for both the acquisition of this knowledge and use of the knowledge in...
Show moreThis work investigates the effective acquisition of lexical knowledge from the Web to perform semantic interpretation. The Web provides an unprecedented amount of natural language from which to gain knowledge useful for semantic interpretation. The knowledge acquired is described as common sense knowledge, information one uses in his or her daily life to understand language and perception. Novel approaches are presented for both the acquisition of this knowledge and use of the knowledge in semantic interpretation algorithms. The goal is to increase accuracy over other automatic semantic interpretation systems, and in turn enable stronger real world applications such as machine translation, advanced Web search, sentiment analysis, and question answering. The major contributions of this dissertation consist of two methods of acquiring lexical knowledge from the Web, namely a database of common sense knowledge and Web selectors. The first method is a framework for acquiring a database of concept relationships. To acquire this knowledge, relationships between nouns are found on the Web and analyzed over WordNet using information-theory, producing information about concepts rather than ambiguous words. For the second contribution, words called Web selectors are retrieved which take the place of an instance of a target word in its local context. The selectors serve for the system to learn the types of concepts that the sense of a target word should be similar. Web selectors are acquired dynamically as part of a semantic interpretation algorithm, while the relationships in the database are useful to stand-alone programs. A final contribution of this dissertation concerns a novel semantic similarity measure and an evaluation of similarity and relatedness measures on tasks of concept similarity. Such tasks are useful when applying acquired knowledge to semantic interpretation. Applications to word sense disambiguation, an aspect of semantic interpretation, are used to evaluate the contributions. Disambiguation systems which utilize semantically annotated training data are considered supervised. The algorithms of this dissertation are considered minimally-supervised; they do not require training data created by humans, though they may use human-created data sources. In the case of evaluating a database of common sense knowledge, integrating the knowledge into an existing minimally-supervised disambiguation system significantly improved results -- a 20.5\% error reduction. Similarly, the Web selectors disambiguation system, which acquires knowledge directly as part of the algorithm, achieved results comparable with top minimally-supervised systems, an F-score of 80.2\% on a standard noun disambiguation task. This work enables the study of many subsequent related tasks for improving semantic interpretation and its application to real-world technologies. Other aspects of semantic interpretation, such as semantic role labeling could utilize the same methods presented here for word sense disambiguation. As the Web continues to grow, the capabilities of the systems in this dissertation are expected to increase. Although the Web selectors system achieves great results, a study in this dissertation shows likely improvements from acquiring more data. Furthermore, the methods for acquiring a database of common sense knowledge could be applied in a more exhaustive fashion for other types of common sense knowledge. Finally, perhaps the greatest benefits from this work will come from the enabling of real world technologies that utilize semantic interpretation.
Show less - Date Issued
- 2011
- Identifier
- CFE0003688, ucf:48805
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003688
- Title
- Automatically Acquiring a Semantic Network of Related Concepts.
- Creator
-
Szumlanski, Sean, Gomez, Fernando, Wu, Annie, Hughes, Charles, Sims, Valerie, University of Central Florida
- Abstract / Description
-
We describe the automatic acquisition of a semantic network in which over 7,500 of the most frequently occurring nouns in the English language are linked to their semantically related concepts in the WordNet noun ontology. Relatedness between nouns is discovered automatically from lexical co-occurrence in Wikipedia texts using a novel adaptation of an information theoretic inspired measure. Our algorithm then capitalizes on salient sense clustering among these semantic associates to...
Show moreWe describe the automatic acquisition of a semantic network in which over 7,500 of the most frequently occurring nouns in the English language are linked to their semantically related concepts in the WordNet noun ontology. Relatedness between nouns is discovered automatically from lexical co-occurrence in Wikipedia texts using a novel adaptation of an information theoretic inspired measure. Our algorithm then capitalizes on salient sense clustering among these semantic associates to automatically disambiguate them to their corresponding WordNet noun senses (i.e., concepts). The resultant concept-to-concept associations, stemming from 7,593 target nouns, with 17,104 distinct senses among them, constitute a large-scale semantic network with 208,832 undirected edges between related concepts. Our work can thus be conceived of as augmenting the WordNet noun ontology with RelatedTo links.The network, which we refer to as the Szumlanski-Gomez Network (SGN), has been subjected to a variety of evaluative measures, including manual inspection by human judges and quantitative comparison to gold standard data for semantic relatedness measurements. We have also evaluated the network's performance in an applied setting on a word sense disambiguation (WSD) task in which the network served as a knowledge source for established graph-based spreading activation algorithms, and have shown: a) the network is competitive with WordNet when used as a stand-alone knowledge source for WSD, b) combining our network with WordNet achieves disambiguation results that exceed the performance of either resource individually, and c) our network outperforms a similar resource, WordNet++ (Ponzetto (&) Navigli, 2010), that has been automatically derived from annotations in the Wikipedia corpus.Finally, we present a study on human perceptions of relatedness. In our study, we elicited quantitative evaluations of semantic relatedness from human subjects using a variation of the classical methodology that Rubenstein and Goodenough (1965) employed to investigate human perceptions of semantic similarity. Judgments from individual subjects in our study exhibit high average correlation to the elicited relatedness means using leave-one-out sampling (r = 0.77, ? = 0.09, N = 73), although not as high as average human correlation in previous studies of similarity judgments, for which Resnik (1995) established an upper bound of r = 0.90 (? = 0.07, N = 10). These results suggest that human perceptions of relatedness are less strictly constrained than evaluations of similarity, and establish a clearer expectation for what constitutes human-like performance by a computational measure of semantic relatedness. We also contrast the performance of a variety of similarity and relatedness measures on our dataset to their performance on similarity norms and introduce our own dataset as a supplementary evaluative standard for relatedness measures.
Show less - Date Issued
- 2013
- Identifier
- CFE0004759, ucf:49767
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004759