Current Search: Lithography (x)
View All Items
- Title
- RADIATION STUDIES OF THE TIN-DOPED MICROSCOPIC DROPLET LASER PLASMA LIGHT SOURCE SPECIFIC TO EUV LITHOGRAPHY.
- Creator
-
Koay, Chiew-Seng, Richardson, Martin, University of Central Florida
- Abstract / Description
-
Extreme ultraviolet lithography(EUVL) is being developed worldwide as the next generation technology to be inserted in ~ 2009 for the mass production of IC chips with feature sizes
Show moreExtreme ultraviolet lithography(EUVL) is being developed worldwide as the next generation technology to be inserted in ~ 2009 for the mass production of IC chips with feature sizes <35 nm. One major challenge to its implementation is the development of a 13.5 nm EUV source of radiation that meets the requirements of current roadmap designs of the source of illumination in commercial EUVL scanners. The light source must be debris-free, in a free-space environment with the imaging EUV optics that must provide sufficient, narrow spectral band EUV power to print 100 wafers/hr. To meet this need, extensive studies on emission from a laser plasma source utilizing tin-doped droplet target was conducted. Presented in this work, are the many optical techniques such as spectroscopy, radiometry, and imaging, that were employed to characterize and optimize emission from the laser plasma source State of the art EUV spectrographs were employed to observe the source's spectrum under various laser irradiation conditions. Comparing the experimental spectra to those from theory, has allowed the determination of the Sn ion stages responsible for emitting into the useful EUV bandwidth. Experimental results were compared to spectral simulations obtained using Collisional-Radiative Equilibrium (CRE) model, as well. Moreover, extensive measurements surveying source emission from 2 nm to 30 nm, which is the region of the electromagnetic spectrum defined as EUV, was accomplished. Absolutely calibrated metrology was employed with the Flying Circus instrument from which the source's conversion efficiency (CE)--from laser to the useful EUV energy--was characterized under various laser irradiation conditions. Hydrodynamic simulations of the plasma expansion together with the CRE model predicted the condition at which optimum conversion could be attained. The condition was demonstrated experimentally, with the highest CE to be slightly above 2%, which is the highest value among all EUV source contenders. In addition to laser intensity, the CE was found to depend on the laser wavelength. For better understanding, this observation is compared to results from simulations. Through a novel approach in imaging, the size of the plasma was characterized by recording images of the plasma within a narrow band, around 13.5 nm. The size, approximately 100 ìm, is safely within the etendue limit set by the optical elements in the EUV scanner. Finally, the notion of irradiating the target with multiple laser beams was explored for the possibility of improving the source's conversion efficiency.
Show less - Date Issued
- 2006
- Identifier
- CFE0000938, ucf:46733
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000938
- Title
- LASER PLASMA RADIATION STUDIES FOR DROPLET SOURCES IN THE EXTREME ULTRAVIOLET.
- Creator
-
Kamtaprasad, Reuvani, Richardson, Martin, University of Central Florida
- Abstract / Description
-
The advancement of laboratory based Extreme Ultraviolet (EUV) radiation has escalated with the desire to use EUV as a source for semiconductor device printing. Laser plasmas based on a mass-limited target concept, developed within the Laser Plasma Laboratory demonstrate a much needed versatility for satisfying rigorous source requirements. This concept produces minimal debris concerns and allows for the attainment of high repetition rates as well as the accommodation of various laser and...
Show moreThe advancement of laboratory based Extreme Ultraviolet (EUV) radiation has escalated with the desire to use EUV as a source for semiconductor device printing. Laser plasmas based on a mass-limited target concept, developed within the Laser Plasma Laboratory demonstrate a much needed versatility for satisfying rigorous source requirements. This concept produces minimal debris concerns and allows for the attainment of high repetition rates as well as the accommodation of various laser and target configurations. This work demonstrates the generation of EUV radiation by creating laser plasmas from mass-limited targets with indium, tin, and antimony doped droplets. Spectral emission from the laser plasmas is quantified using a flat-field spectrometer. COWAN code oscillator strength predications for each of the dopants were convolved with narrow Gaussian functions creating synthetic spectra for the EUV region between 10 nm - 20 nm. A preliminary comparison was made between the theoretical spectra and experimental results. From this comparison, ion stage transitions for each of the hot dense plasmas generated were assessed.
Show less - Date Issued
- 2010
- Identifier
- CFE0003168, ucf:48597
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003168
- Title
- ADDITIVE LITHOGRAPHY FABRICATION AND INTEGRATION OF MICRO OPTICS.
- Creator
-
Pitchumani, Mahesh, Johnson, Eric, University of Central Florida
- Abstract / Description
-
Optical elements are the fundamental components in photonic systems and are used to transform an input optical beam into a desired beam profile or to couple the input beam into waveguides, fibers, or other optical systems or devices. Macroscopic optical elements are easily fabricated using grinding and polishing techniques, but few methods exist for inexpensive fabrication of micro optical elements. In this work we present an innovative technique termed Additive Lithography that makes use of...
Show moreOptical elements are the fundamental components in photonic systems and are used to transform an input optical beam into a desired beam profile or to couple the input beam into waveguides, fibers, or other optical systems or devices. Macroscopic optical elements are easily fabricated using grinding and polishing techniques, but few methods exist for inexpensive fabrication of micro optical elements. In this work we present an innovative technique termed Additive Lithography that makes use of binary masks and controlled partial exposures to sculpt photoresist into the desired optical surface relief profile. We explore various masking schemes for fabricating a variety of optical elements with unprecedented flexibility and precision. These masking schemes used in conjunction with the additive lithographic method allows us to carefully control the photoresist exposure and reflow processes for fabricating complex aspheric lens elements, including aspheric elements whose fabrication often proves highly problematic. It will be demonstrated that employing additive lithography for volume sculpting followed by controlled reflow can also allow us to fabricate refractive beam shaping elements. Finally we will discuss the dry etching techniques used to transfer these optical elements into the glass substrate. Thus the additive lithography technique will be demonstrated as an inexpensive, high throughput and efficient process in the fabrication of micro optical elements.
Show less - Date Issued
- 2006
- Identifier
- CFE0000914, ucf:46761
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000914
- Title
- Improved system for fabrication and characterization of nanophotonic devices by multi-photon lithography.
- Creator
-
Sharma, Rashi, Kuebler, Stephen, Zou, Shengli, Huo, Qun, Beazley, Melanie, Phanstiel, Otto, University of Central Florida
- Abstract / Description
-
A new system for multi-photon lithography (MPL) was developed and used to fabricate three-dimensional (3D) structures with higher aspect ratio, better resolution, improved fidelity, and reduced structural distortion relative to a conventional implementation of MPL.A set of curved waveguides (Rbend = 19 (&)#181;m, and 38 (&)#181;m) and straight waveguides (length = 50 (&)#181;m, Rbend = ?) were fabricated in an epoxide photopolymer and optically characterized using light having a wavelength in...
Show moreA new system for multi-photon lithography (MPL) was developed and used to fabricate three-dimensional (3D) structures with higher aspect ratio, better resolution, improved fidelity, and reduced structural distortion relative to a conventional implementation of MPL.A set of curved waveguides (Rbend = 19 (&)#181;m, and 38 (&)#181;m) and straight waveguides (length = 50 (&)#181;m, Rbend = ?) were fabricated in an epoxide photopolymer and optically characterized using light having a wavelength in vacuum of ?0 = 2.94 (&)#181;m. The optical performance of the waveguides was compared to novel spatially-variant photonic crystals (SVPCs) previously studied in the group. The waveguides were found to guide light with 90% lower efficiency, due to mode leakage. The study provides further evidence that SVPCs operate not through total internal reflection, but rather through self-collimation, as designed.3D uniform-lattice photonic crystals (ULPCs) were fabricated by MPL using a commercial acrylate photopolymer. The ULPCs were optically characterized at ?0 = 1.55 (&)#181;m. A laser beam with adjustable bandwidth was used to measure the self-collimation in the ULPCs. For the low bandwidth beam, vertically polarized light was self-collimated, whereas horizontally polarized light diverged. The transmission efficiency of the ULPCs was also measured as a function of fill factor. The ULPC having a fill factor of 48% exhibited 80% transmission.An etching process was also developed for non-destructively removing Au/Pd coatings that must be deposited onto structures to image them by scanning electron microscopy. The structural and optical integrity of the samples was found to be maintained despite etching. The sputter-coated sample sustained no structural damage when exposed to the ?0 = 1.55 (&)#181;m. However, the metal coating resulted in diminished transmission efficiency due to the high reflection of the 1.55 (&)#181;m beam by the metal coating.
Show less - Date Issued
- 2018
- Identifier
- CFE0007767, ucf:52380
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007767
- Title
- EXTREME ULTRAVIOLET SPECTRAL STREAK CAMERA.
- Creator
-
Szilagyi, John, Richardson, Martin, University of Central Florida
- Abstract / Description
-
The recent development of extreme ultraviolet (EUV) sources has increased the need for diagnostic tools, and has opened up a previously limited portion of the spectrum. With ultrafast laser systems and spectroscopy moving into shorter timescales and wavelengths, the need for nanosecond scale imaging of EUV is increasing. EUVÃÂÃÂÃÂÃÂ's high absorption has limited the number of imaging options due...
Show moreThe recent development of extreme ultraviolet (EUV) sources has increased the need for diagnostic tools, and has opened up a previously limited portion of the spectrum. With ultrafast laser systems and spectroscopy moving into shorter timescales and wavelengths, the need for nanosecond scale imaging of EUV is increasing. EUVÃÂÃÂÃÂÃÂ's high absorption has limited the number of imaging options due to the many atomic resonances in this spectrum. Currently EUV is imaged with photodiodes and X-ray CCDs. However photodiodes are limited in that they can only resolve intensity with respect to time and X-ray CCDs are limited to temporal resolution in the microsecond range. This work shows a novel approach to imaging EUV light over a nanosecond time scale, by using an EUV scintillator to convert EUV to visible light imaged by a conventional streak camera. A laser produced plasma, using a mass-limited tin based target, provided EUV light which was imaged by a grazing incidence flat field spectrometer onto a Ce:YAG scintillator. The EUV spectrum (5 nm-20 nm) provided by the spectrometer is filter by a zirconium filter and then converted by the scintillator to visible light (550 nm) which can then be imaged with conventional optics. Visible light was imaged by an electron image tube based streak camera. The streak camera converts the visible light image to an electron image using a photocathode, and sweeps the image across a recording medium. The streak camera also provides amplification and gating of the image by the means of a micro channel plate, within the image tube, to compensate for low EUV intensities. The system provides 42 ns streaked images of light with a temporal resolution of 440 ps at a repetition rate of 1 Hz. Upon calibration the EUV streak camera developed in this work will be used in future EUV development.
Show less - Date Issued
- 2010
- Identifier
- CFE0003558, ucf:48905
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003558
- Title
- Fabrication and Characterization of Spatially-Variant Self-Collimating Photonic Crystals.
- Creator
-
Digaum, Jennefir, Kuebler, Stephen, Kik, Pieter, Schoenfeld, Winston, Likamwa, Patrick, Gesquiere, Andre, University of Central Florida
- Abstract / Description
-
Spatially-variant photonic crystals (SVPCs) created using materials having a low refractive index are shown to be capable of abruptly controlling light beams with high polarization selectivity. SVPCs are photonic crystals for which the orientation of the unit cell is controllably varied throughout the lattice to control the flow of light. Multi-photon lithography in a photo polymer was used to fabricate three-dimensional SVPCs that direct the flow of light around a 90 degree bend. The optical...
Show moreSpatially-variant photonic crystals (SVPCs) created using materials having a low refractive index are shown to be capable of abruptly controlling light beams with high polarization selectivity. SVPCs are photonic crystals for which the orientation of the unit cell is controllably varied throughout the lattice to control the flow of light. Multi-photon lithography in a photo polymer was used to fabricate three-dimensional SVPCs that direct the flow of light around a 90 degree bend. The optical performance of the SVPCs was characterized using a scanning optical-fiber system that introduced light onto the input face of a structure and measured the intensity of light emanating from the output faces.As a proof-of-concept, SVPCs that can bend a beam at a wavelength of ?0 = 2.94 ?m were fabricated in the photo-polymer SU-8. The SVPCs were shown to direct infrared light of one polarization through a sharp bend, while the other polarization propagated straight through the SVPC, when the volumetric fill-factor is near 50%. The peak-to-peak ratio of intensities of the bent- and straight-through beams was 8:1, and a power efficiency of 8% was achieved. The low efficiency is attributed to optical absorption in SU-8 at ?0 = 2.94 ?m.SVPCs that can bend a beam at telecommunications wavelengths near ?0 = 1.55 ?m were fabricated by multi-photon lithography in the photo-polymer IP-Dip. IP-Dip was chosen over SU 8 to enable fabrication of finer features, as are needed for an SVPC scaled in size to operate at shorter wavelengths. Experimental characterization shows that these particular SVPCs provide effective control of the vertically polarized beam at ?0 = 1.55 ?m, when the volumetric fill-factor is around 46%. The beam bending peak efficiency was found to be 52.5% with a peak-to-peak ratio between the bent- and straight-through beams of 78.7. Additionally, these SVPCs can bend a light beam with a broad bandwidth of 153 nm that encompasses both the C- and S-bands of the telecommunications window. Furthermore, the SVPCs have high tolerance to misalignment, in which an offset of the input beam by as much as 6 ?m causes the beam-bending efficiency to drop no more than 50%. Finally, it is shown that these particular SVPCs can bend beams without significantly distorting the mode profile. This work introduces a new scheme for controlling light that should be useful for integrated photonics.The penultimate chapter discusses nonlinear phenomena that were observed during the optical characterization of the SVPCs using a high peak-power amplified femtosecond laser system. The first of these effects is referred to as "super-collimation", in which the beam bending peak efficiency of certain SVPCs increases with input intensity, reaching as high as 68%. The second effect pertains to nonlinear imaging of light at ?0 = 1.55 ?m scattered from an SVPC and detected using a silicon-CCD camera. This effect enables beam bending within the device to be imaged in real time. The dissertation concludes with an outlook for SVPCs, discussing potential applications and challenges that must be addressed to advance their use in photonics.
Show less - Date Issued
- 2016
- Identifier
- CFE0006527, ucf:51371
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006527
- Title
- SELF-ASSEMBLED LIPID TUBULES: STRUCTURES, MECHANICAL PROPERTIES, AND APPLICATIONS.
- Creator
-
Zhao, Yue, Fang, Jiyu, University of Central Florida
- Abstract / Description
-
Self-assembled lipid tubules are particularly attractive for inorganic synthesis and drug delivery because they have hollow cylindrical shapes and relatively rigid mechanical properties. In this thesis work, we have synthesized lipid tubules of 1,2-bis(tricosa-10,12-dinoyl)-sn-glycero-3-phosphocholine (DC8,9PC) by self-assembly and polymerization in solutions. We demonstrate for the first time that both uniform and modulated molecular tilt orderings exist in the tubule walls, which have been...
Show moreSelf-assembled lipid tubules are particularly attractive for inorganic synthesis and drug delivery because they have hollow cylindrical shapes and relatively rigid mechanical properties. In this thesis work, we have synthesized lipid tubules of 1,2-bis(tricosa-10,12-dinoyl)-sn-glycero-3-phosphocholine (DC8,9PC) by self-assembly and polymerization in solutions. We demonstrate for the first time that both uniform and modulated molecular tilt orderings exist in the tubule walls, which have been predicted by current theories, and therefore provide valuable supporting evidences for self-assembly mechanisms of chiral molecules. Two novel methods are developed for studying the axial and radial deformations of DC8,9PC lipid tubules. Mechanical properties of DC8,9PC tubules are systematically studied in terms of persistence length, bending rigidity, strain energy, axial and radial elastic moduli, and critical force for collapse. Mechanisms of recovery and surface stiffening are discussed. Due to the high aspect ratio of lipid tubules, the hierarchical assembly of lipid tubules into ordered arrays and desired architectures is critical in developing their applications. Two efficient methods for fabricating ordered arrays of lipid tubules on solid substrates have been developed. Ordered arrays of hybrid silica-lipid tubes are synthesized by tubule array-templated sol-gel reactions. Ordered arrays of optical anisotropic fibers with tunable shapes and refractive indexes are fabricated. This thesis work provides a paradigm for molecularly engineered structures.
Show less - Date Issued
- 2007
- Identifier
- CFE0001918, ucf:47486
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001918
- Title
- DESIGN, FABRICATION, AND TESTING OF HIGH-TRANSPARENCY DEEP ULTRA-VIOLETCONTACTS USING SURFACE PLASMON COUPLING IN SUBWAVELENGTH ALUMINUM MESHES.
- Creator
-
Mazuir, Clarisse, Schoenfeld, Winston, University of Central Florida
- Abstract / Description
-
The present work aims at enhancing the external quantum efficiencies of ultra-violet (UV) sensitive photodetectors (PDs) and light emitting diodes (LEDs)for any light polarization. Deep UV solid state devices are made out of AlGaN or MgZnO and their performances suffer from the high resistivity of their p-doped regions. They require transparent p-contacts; yet the most commonly used transparent contacts have low transmission in the UV: indium tin oxide (ITO) and nickel-gold (Ni/Au 5/5 nms)...
Show moreThe present work aims at enhancing the external quantum efficiencies of ultra-violet (UV) sensitive photodetectors (PDs) and light emitting diodes (LEDs)for any light polarization. Deep UV solid state devices are made out of AlGaN or MgZnO and their performances suffer from the high resistivity of their p-doped regions. They require transparent p-contacts; yet the most commonly used transparent contacts have low transmission in the UV: indium tin oxide (ITO) and nickel-gold (Ni/Au 5/5 nms) transmit less than 50% and 30% respectively at 300 nm. Here we investigate the use of surface plasmons (SPs) to design transparent p-contacts for AlGaN devices in the deep UV region of the spectrum. The appeal of using surface plasmon coupling arose from the local electromagnetic field enhancement near the metal surface as well as the increase in interaction time between the field and semiconductor if placed on top of a semiconductor. An in/out-coupling mechanism is achieved by using a grating consisting of two perpendicularly oriented sets of parallel aluminum lines with periods as low as 250 nm. The incident light is first coupled into SPs at the air/aluminum interface which then re-radiate at the aluminum/AlGaN interface and the photons energy is transferred to SP polaritons (SPPs) and back to photons. High transmission can be achieved not only at normal incidence but for a wider range of incident angles. A finite difference time domain (FDTD) package from R-Soft was used to simulate and design such aluminum gratings with transparency as high as 100% with tunable peak wavelength, bandwidth and angular acceptance. A rigorous coupled wave analysis (RCWA) was developed in Matlab to validate the FDTD results. The high UV transparency meshes were then fabricated using an e-beam assisted lithography lift-off process. Their electrical and optical properties were investigated. The electrical characterization was very encouraging; the sheet resistances of these meshes were lower than those of the conventionally used transparent contacts. The optical transmissions were lower than expected and the causes for the lower measurements have been investigated. The aluminum oxidation, the large metal grain size and the line edge roughness were identified as the main factors of inconsistency and solutions are proposed to improve these shortcomings. The effect of aluminum oxidation was calculated and the passivation of aluminum with SiO2 was evaluated as a solution. A cold deposition of aluminum reduced the aluminum grain size from 60 nm to 20 nm and the roughness from 5 nm to 0.5 nm. Furthermore, replacing the conventional lift-off process by a dry back-etch process led to much smoother metal line edges and much high optical transparency. The optical measurements were consistent with the simulations. Therefore, reduced roughness and smooth metal line edges were found to be especially critical considerations for deep UV application of the meshes.
Show less - Date Issued
- 2011
- Identifier
- CFE0003645, ucf:48893
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003645