Current Search: MEMBRANES (x)
Pages
-
-
Title
-
BENCH SCALE ANALYSIS OF EXPERIMENTAL FOULING-RESISTENT LOW PRESSURE REVERSE OSMOSIS MEMBRANES USING HIGH ORGANIC SURFACE WATER AND SYNTHETIC COLLOIDAL WATER.
-
Creator
-
Doan, Matthew, Randall, Andrew, University of Central Florida
-
Abstract / Description
-
The utilization of membrane treatment for the production of potable water has become more prevalent in today's industry. As drinking water regulations become more stringent this trend is expected to continue. Widespread use is also a result of membrane treatment being the best available treatment in many cases. While membrane treatment is a proven technology that can produce a consistently superior product to conventional treatment methods, membrane fouling and concentrate disposal are...
Show moreThe utilization of membrane treatment for the production of potable water has become more prevalent in today's industry. As drinking water regulations become more stringent this trend is expected to continue. Widespread use is also a result of membrane treatment being the best available treatment in many cases. While membrane treatment is a proven technology that can produce a consistently superior product to conventional treatment methods, membrane fouling and concentrate disposal are issues that drive up the cost of membrane treatment and can effectively eliminate it from consideration as a treatment alternative. This research focused on membrane fouling. A series of filtration experiments were conducted on various membranes to investigate the physical and chemical factors that influence fouling. The effects of both organic and colloidal fouling were explored by conducting research on various commercial membranes and experimental membranes by Saehan Industries, Inc. (Saehan). Saehan's membranes were in various stages of development in their process of creating a more fouling resistant membrane (FRM). Various hydrodynamic and chemical conditions were used to characterize the evolution of the Saehan commercial products to the experimental FRMs. The developmental stage of the membrane tested included analysis of the various trade secret coating techniques termed single, double, and special. A proprietary post-treatment process was also utilized in combination with each of the coating techniques. The developmental membranes were also compared to commercially available FRMs. The existing FRMs showed better fouling resistance than Saehan's commercially available products in high organic surficial groundwater testing. Synthetic colloidal water testing demonstrated the superior performance of the FRMs, but was not acute enough to differentiate the fouling performance within the group of FRMs or Saehan products. Average roughness decreased slightly as coating technique progressed from single to double to special. Post-treatment increased roughness in single coated membranes and reduced the roughness in double and special coated membranes. The relative charge differences in the developmental membranes were exhibited among non post-treated membranes. Post-treatment membranes did not demonstrate relative surface charge differences consistent with the manufacturer. Initial mass transfer coefficient, determined by clean water testing, increased as coating moved from single to double to special. Clean water testing showed increased initial mass transfer coefficient for membranes with post-treatment. Single coated membranes showed the best salt rejection capability among non post-treated membranes. Post-treatment increased selectivity for all membrane coating techniques. The coating effect on fouling potential had an inverse relationship between single coated versus double and special coated membranes. The post-treatment increased fouling resistance for the single coated membranes, but decreased fouling resistance of double and special coated membranes. The SN7 membranes showed the best performance of the developmental membranes.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001508, ucf:47123
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001508
-
-
Title
-
The Effect of Recycled Backwash Water Operations on Fouling in a Coagulation-Ultrafiltration Process and Impact of Preozonation on Membrane Productivity.
-
Creator
-
Biscardi, Paul, Duranceau, Steven, Sadmani, A H M Anwar, Lee, Woo Hyoung, Clausen, Christian, University of Central Florida
-
Abstract / Description
-
This dissertation consists of research that focused on pretreatment strategies to reduce fouling of ultrafiltration (UF) membranes used for drinking water treatment, and was segmented into four key components. (1) In the first component of the work, the long-term fouling behavior of a polyethersulfone (PES) hollow-fiber UF membrane was studied at the pilot-scale for treatment of surface water over a one-year period. Pilot testing of a coagulation-flocculation-sedimentation (CFS) pretreatment...
Show moreThis dissertation consists of research that focused on pretreatment strategies to reduce fouling of ultrafiltration (UF) membranes used for drinking water treatment, and was segmented into four key components. (1) In the first component of the work, the long-term fouling behavior of a polyethersulfone (PES) hollow-fiber UF membrane was studied at the pilot-scale for treatment of surface water over a one-year period. Pilot testing of a coagulation-flocculation-sedimentation (CFS) pretreatment system revealed that chemically irreversible fouling was poorly correlated with turbidity and total organic carbon. It was also shown that recycled backwash water may have impacted membrane process performance, and that chemically irreversible fouling was responsive to changes in pretreatment configuration. (2) In the second component, pre-oxidation with ozone (preozonation) was then studied as a pretreatment process to reduce natural organic matter (NOM) fouling at the pilot-scale. This work suggested that preozonation reduced long-term chemically irreversible fouling. The chemically reversible fouling index increased by 59%, indicating that preozonation changed the characteristics of the foulants, yielding more effective chemically enhanced backwashes. (3) Bench-scale work that studied changes in NOM characteristics associated with the improved process performance were performed using fluorescent excitation-emission (EEM) spectroscopy and high-performance size-exclusion chromatography (HPSEC). Specifically, ozone was applied prior to a CFS-UF process and compared to a CFS-UF condition without ozone as the control. Although CFS reduced turbidity by 29%, ozone, when integrated with CFS increased turbidity by 58%, impacting downstream UF performance. As expected, ozone, when integrated with CFS and UF reduced filtrate true color by 40%, UV254 absorbance by 11%, and SUVA by 30%, relative to the control, indicating that preozonation changed the characteristics of the dissolved organic carbon present in the source water. (4) Follow-up bench-scale research using fluorescent EEM spectroscopy and HPSEC assessed operational strategies that impacted organic fouling. Specifically, the fate of fluorescing substances during the recycling of membrane backwash water (MBWW) ahead of CFS-UF process was investigated. Bench-scale UF membranes were used to generate MBWW from a CFS-treated surface water containing 21 mg/L dissolved organic carbon (DOC) registering a 0.95 cm-1 UV254 absorbance that had been coagulated with 100 mg/L with polyaluminum chloride. CFS settled water, when processed with UF, produced MBWW containing 9 mg/L DOC registering a 0.25 cm-1 UV254 absorbance. HPSEC with UV254 detection demonstrated an analogous UV254 reduction as measured by detector response. However, fluorescence EEM spectroscopy revealed that protein-like substances, known to be associated with irreversible fouling, had been concentrated in the MBWW. In order to evaluate recycling operations on overall DOC removal in a CFS-UF process, a blend of 30% MBWW with 70% of raw water was treated, resulting in an overall DOC removal of 73%. However, without MBWW recycle, the CFS-UF process removed less of the influent DOC (63%). In summary, this research demonstrated that NOM characteristics within MBWW should be considered when recycling backwash water in PES membrane operations, and that preozonation reduces chemically irreversible fouling when incorporated into a CSF-UF system.
Show less
-
Date Issued
-
2016
-
Identifier
-
CFE0006074, ucf:50951
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006074
-
-
Title
-
FUNDAMENTAL STUDY OF MECHANICAL AND CHEMICAL DEGRADATION MECHANISMS OF PEM FUEL CELL MEMBRANES.
-
Creator
-
Yoon, Wonseok, Huang, Xinyu, University of Central Florida
-
Abstract / Description
-
One of the important factors determining the lifetime of polymer electrolyte membrane fuel cells (PEMFCs) is membrane degradation and failure. The lack of effective mitigation methods is largely due to the currently very limited understanding of the underlying mechanisms for mechanical and chemical degradations of fuel cell membranes. In order to understand degradation of membranes in fuel cells, two different experimental approaches were developed; one is fuel cell testing under open circuit...
Show moreOne of the important factors determining the lifetime of polymer electrolyte membrane fuel cells (PEMFCs) is membrane degradation and failure. The lack of effective mitigation methods is largely due to the currently very limited understanding of the underlying mechanisms for mechanical and chemical degradations of fuel cell membranes. In order to understand degradation of membranes in fuel cells, two different experimental approaches were developed; one is fuel cell testing under open circuit voltage (OCV) with bi-layer configuration of the membrane electrode assemblies (MEAs) and the other is a modified gas phase FentonÃÂ's test. Accelerated degradation tests for polymer electrolyte membrane (PEM) fuel cells are frequently conducted under open circuit voltage (OCV) conditions at low relative humidity (RH) and high temperature. With the bi-layer MEA technique, it was found that membrane degradation is highly localized across thickness direction of the membrane and qualitatively correlated with location of platinum (Pt) band through mechanical testing, Infrared (IR) spectroscopy, fluoride emission, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive spectroscopy (EDS) measurement. One of the critical experimental observations is that mechanical behavior of membranes subjected to degradation via FentonÃÂ's reaction exhibit completely different behavior with that of membranes from the OCV testing. This result led us to believe that other critical factors such as mechanical stress may affect on membrane degradation and therefore, a modified gas phase FentonÃÂ's test setup was developed to test the hypothesis. Interestingly, the results showed that mechanical stress directly accelerates the degradation rate of ionomer membranes, implying that the rate constant for the degradation reaction is a function of mechanical stress in addition to commonly known factors such as temperature and humidity. Membrane degradation induced by mechanical stress necessitates the prediction of the stress distribution in the membrane under various conditions. One of research focuses was on the developing micromechanism-inspired continuum model for ionomer membranes. The model is the basis for stress analysis, and is based on a hyperelastic model with reptation-inspired viscous flow rule and multiplicative decomposition of viscoelastic and plastic deformation gradient. Finally, evaluation of the membrane degradation requires a fuel cell model since the degradation occurs under fuel cell operating conditions. The fuel cell model included structural mechanics models and multiphysics models which represents other phenomena such as gas and water transport, charge conservation, electrochemical reactions, and energy conservation. The combined model was developed to investigate the compression effect on fuel cell performance and membrane stress distribution.
Show less
-
Date Issued
-
2010
-
Identifier
-
CFE0003006, ucf:48359
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003006
-
-
Title
-
AN INVESTIGATION OF SIZE EXCLUSION AND DIFFUSION CONTROLLED MEMBRANE FOULING.
-
Creator
-
Hobbs, Colin, Taylor, James, University of Central Florida
-
Abstract / Description
-
The reduction of membrane productivity (i.e. membrane fouling) during operation occurs in virtually all membrane applications. Membrane fouling originates from the method by which membranes operate: contaminants are rejected by the membrane and retained on the feed side of the membrane while treated water passes through the membrane. The accumulation of these contaminants on the feed side of the membrane results in increased operating pressures, increased backwashing frequencies, increased...
Show moreThe reduction of membrane productivity (i.e. membrane fouling) during operation occurs in virtually all membrane applications. Membrane fouling originates from the method by which membranes operate: contaminants are rejected by the membrane and retained on the feed side of the membrane while treated water passes through the membrane. The accumulation of these contaminants on the feed side of the membrane results in increased operating pressures, increased backwashing frequencies, increased chemical cleaning frequencies, and increased membrane replacement frequencies. The most significant practical implication of membrane fouling is increased operating and maintenance costs. As such, membrane fouling must be properly managed to ensure successful and efficient operation of membrane systems. This document presents four independent studies regarding the fouling of size exclusion and diffusion controlled membranes. A brief description of each study is presented below. The first study systematically investigated the fouling characteristics of various thin film composite polyamide reverse osmosis (RO) and nanofiltration (NF) membranes using a high organic surficial groundwater obtained from the City of Plantation, Florida. Prior to bench-scale fouling experiments, surface properties of the selected RO and NF membranes were carefully analysed in order to correlate the rate and extent of fouling to membrane surface characteristics, such as roughness, charge and hydrophobicity. More specifically, the surface roughness was characterized by atomic force microscopy, while the surface charge and hydrophobicity of the membranes were evaluated through zeta potential and contact angle measurements, respectively. The results indicated that membrane fouling became more severe with increasing surface roughness, as measured by the surface area difference, which accounts for both magnitude and frequency of surface peaks. Surface roughness was correlated to flux decline; however, surface charge was not. The limited range of hydrophobicity of the flat sheet studies prohibited conclusions regarding the correlation of flux decline and hydrophobicity. Mass loading and resistance models were developed in the second study to describe changes in solvent mass transfer (membrane productivity) over time of operation. Changes in the observed solvent mass transfer coefficient of four low pressure reverse osmosis membranes were correlated to feed water quality in a 2,000 hour pilot study. Independent variables utilized for model development included: temperature, initial solvent mass transfer coefficient, water loading, ultraviolet absorbance, turbidity, and monochloramine concentration. Models were generated by data collected throughout this study and were subsequently used to predict the solvent mass transfer coefficient. The sensitivity of each model with respect to monochloramine concentration was also analyzed. In the third study, mass loading and resistance models were generated to predict changes in solvent mass transfer (membrane productivity) with operating time for three reverse osmosis and nanofiltration membranes. Variations in the observed solvent mass transfer coefficient of these membranes treating filtered secondary effluent were correlated to the initial solvent mass transfer coefficient, temperature, and water loading in a 2,000 hour pilot study. Independent variables evaluated during model development included: temperature, initial solvent mass transfer coefficient, water loading, total dissolved solids, orthophosphorous, silica, total organic carbon, and turbidity. All models were generated by data collected throughout this study. Autopsies performed on membrane elements indicated membranes that received microfiltered water accumulated significantly more dissolved organic carbon and polysaccharides on their surface than membranes that received ultrafiltered water. Series of filtration experiments were systematically performed to investigate physical and chemical factors affecting the efficiency of backwashing during microfiltration of colloidal suspensions in the fourth study. Throughout this study, all experiments were conducted in dead-end filtration mode utilizing an outside-in, hollow-fiber module with a nominal pore size of 0.1 µm. Silica particles (mean diameter ~ 0.14 µm) were used as model colloids. Using a flux decline model based on the Happel's cell for the hydraulic resistance of the particle layer, the cake structure was determined from experimental fouling data and then correlated to backwash efficiency. Modeling of experimental data revealed no noticeable changes in cake layer structure when feed particle concentration and operating pressure increased. Specifically, the packing density of the cake layer (l-cake porosity) in the cake layer ranged from 0.66 to 0.67, which corresponds well to random packing density. However, the particle packing density increased drastically with ionic strength. The results of backwashing experiments demonstrated that the efficiency of backwashing decreased significantly with increasing solution ionic strength, while backwash efficiency did not vary when particle concentration and operating pressure increased. This finding suggests that backwash efficiency is closely related to the structure of the cake layer formed during particle filtration. More densely packed cake layers were formed under high ionic strength, and consequently less flux was recovered per given backwash volume during backwashing.
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001854, ucf:47366
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001854
-
-
Title
-
Study of the Effect of Surface Morphology on Mass Transfer and Fouling Behavior of Reverse Osmosis and Nanofiltration Membrane Processes.
-
Creator
-
Fang, Yuming, Duranceau, Steven, Randall, Andrew, Wang, Dingbao, Yestrebsky, Cherie, University of Central Florida
-
Abstract / Description
-
Reverse osmosis (RO) and nanofiltration (NF) membranes are pressure driven, diffusion controlled process. The influence of surface characteristics on membrane process performance is considered significant and is not well understood. Current mass transport models generally assume constant mass transfer coefficients (MTCs) based on a homogeneous surface. This work evaluated mass transfer processes by incorporating surface morphology into a diffusion-based model assuming MTCs are dependent on...
Show moreReverse osmosis (RO) and nanofiltration (NF) membranes are pressure driven, diffusion controlled process. The influence of surface characteristics on membrane process performance is considered significant and is not well understood. Current mass transport models generally assume constant mass transfer coefficients (MTCs) based on a homogeneous surface. This work evaluated mass transfer processes by incorporating surface morphology into a diffusion-based model assuming MTCs are dependent on the thickness variation of the membrane's active layer. To mathematically create such a surface layer, Gaussian random vectors embedded in a software system (MATLAB) were used to generate a three-dimensional ridge and valley active layer morphologies. A (")SMOOTH(") script was incorporated to reduce the influence of outlying data and make the hypothetical surfaces visually comparable to the AFM images. A non-homogeneous solution diffusion model (NHDM) was then developed to account for surface variations in the active layer. Concentration polarization (CP) is also affected by this non-homogeneous surface property; therefore, the NHDM was modified by incorporating the CP factor. In addition, recent studies have shown that the membrane surface morphology influences colloidal fouling behavior of RO and NF membranes. With consideration of the spatial variation of the cake thickness along the membranes, a fouling model was established by assuming cake growth is proportional to the localized permeate flow. Flux decline was assumed to be controlled by the resistance of cake growth and accumulated particle back diffusion at the membrane surface.A series of simulations were performed using operating parameters and water qualities data collected from a full-scale brackish water reverse osmosis membrane water treatment plant. The membrane channel was divided into a thousand uniform slices and the water qualities were determined locally through a finite difference approach. Prediction of the total dissolved solid (TDS) permeate concentration using the model was found to be accurate within 5% to 15% as an average percentage of difference (APD) using the NHDM developed in this research work. A comparison of the NHDM and the modified NHDM for concentration polarization (CP) with the commonly accepted homogeneous solution diffusion model (HSDM) using pilot-scale brackish water RO operating data indicated that the NHDM is more accurate when the solute concentration in the feed stream is low, while the NHDMCP appears to be more predictive of permeate concentration when considering high solute feed concentration. Simulation results indicated that surface morphology affects the water qualities in the permeate stream. Higher salt passage was expected to occur at the valley areas when diffusion mass transfer would be greater than at the peaks where the thin-film membrane is thicker. A rough surface tends to increase the TDS accumulation on the valley areas, causing an enhanced osmotic pressure at the valleys of membrane.To evaluate the impact of surface morphology on RO and NF performance, fouling experiments were conducted using flat-sheet membrane and three different nanoparticles, which included SiO2, TiO2 and CeO2. In this study, the rate and extent of fouling was markedly influenced by membrane surface morphology. The atomic force microscopy (AFM) analysis revealed that the higher fouling rate of RO membranes compared to that of NF membranes is due to the inherent ridge-and-valley morphology of the RO membranes. This unique morphology increases the surface roughness, leading to particle accumulation in the valleys, causing a higher flux decline than in smoother membranes. Extended fouling experiments were conducted using one of the RO membranes to compare the effect of different particles on actual water. It was determined that membrane flux decline was not affected by particle type when the feed water was laboratory grade water. On the other hand, membrane flux decline was affected by particle type when diluted seawater served as the feed water. It was found that CeO2 addition resulted in the least observable flux decline and fouling rate, followed by SiO2 and TiO2. Fouling simulation was conducted by fitting the monitored flux data into a cake growth rate model. The model was discretized by a finite difference method to incorporate the surface thickness variation. The ratio of cake growth term (k_1) and particle back diffusion term (k_2) was compared in between different RO and NF membranes. Results indicate that k_2 was less significant for surfaces that exhibited a higher roughness. It was concluded that the valley areas of thin-film membrane surfaces have the ability to capture particles, limiting particle back diffusion.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0004837, ucf:49707
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004837
-
-
Title
-
Membrane topology of a broad-spectrum resistance factor responsible for lipid modification in Enterococcus faecium.
-
Creator
-
Harrison, Jesse, Roy, Herve, Teter, Kenneth, Phanstiel, Otto, University of Central Florida
-
Abstract / Description
-
Aminoacylphosphatidylglycerol synthases (aaPGSs) are integral membrane proteins that use aminoacyl-tRNAs as substrates to catalyze the addition of amino acids to phosphatidylglycerol (PG) in the cytoplasmic membranes of bacteria. Addition of amino acids to PG decreases the net negative charge of the membrane, conferring resistance to various classes of antibacterial agents (i.e., cationic antimicrobial peptides, beta-lactams, glycopeptides, and lipopeptides) and protecting the cell against...
Show moreAminoacylphosphatidylglycerol synthases (aaPGSs) are integral membrane proteins that use aminoacyl-tRNAs as substrates to catalyze the addition of amino acids to phosphatidylglycerol (PG) in the cytoplasmic membranes of bacteria. Addition of amino acids to PG decreases the net negative charge of the membrane, conferring resistance to various classes of antibacterial agents (i.e., cationic antimicrobial peptides, beta-lactams, glycopeptides, and lipopeptides) and protecting the cell against osmotic stress and acidic conditions. aaPGS homologs are found in a variety of clinically relevant microorganisms, including Enterococcus faecium, which is increasingly found to be the etiologic agent of antibiotic-resistant nosocomial infections. Although the broad distribution of these virulence factors across bacterial species makes them attractive targets for therapeutic strategies, little is known about the structure of aaPGSs. Two aaPGS paralogs are found in E. faecium, one of which exhibits relaxed substrate specificity and is responsible for the transfer of Arg (R), Ala (A), and Lys (K) to PG (RakPGS). The catalytic site of RakPGS is located in the hydrophilic C-terminal domain, which is localized in the cytoplasm. The N-terminus contains an integral membrane domain that is thought to harbor flippase activity that translocates the neosynthesized aa-PG from the inner to the outer leaflet of the membrane. We are currently developing the substituted cysteine accessibility method (SCAM) and a dual-reporter fusion system, which exploits alkaline phosphatase (Pho) and ?-galactosidase (LacZ) activities, for investigating the membrane topology of RakPGS in E. faecium.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0006318, ucf:51566
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006318
-
-
Title
-
MECHANISMS OF NANOFILTER FOULING AND TREATMENT ALTERNATIVES FOR SURFACE WATER SUPPLIES.
-
Creator
-
Reiss, Charles, Taylor, James, University of Central Florida
-
Abstract / Description
-
This dissertation addresses the role of individual fouling mechanisms on productivity decline and solute mass transport in nanofiltration (NF) of surface waters. Fouling mechanisms as well as solute mass transport mechanisms and capabilities must be understood if NF of surface waters is to be successful. Nanofiltration of surface waters was evaluated at pilot-scale in conjunction with advanced pretreatment processes selected for minimization of nanofilter fouling, which constituted several...
Show moreThis dissertation addresses the role of individual fouling mechanisms on productivity decline and solute mass transport in nanofiltration (NF) of surface waters. Fouling mechanisms as well as solute mass transport mechanisms and capabilities must be understood if NF of surface waters is to be successful. Nanofiltration of surface waters was evaluated at pilot-scale in conjunction with advanced pretreatment processes selected for minimization of nanofilter fouling, which constituted several integrated membrane systems (IMSs). Membrane fouling mechanisms of concern were precipitation, adsorption, particle plugging, and attached biological growth. Fouling was addressed by addition of acid and antiscalent for control of precipitation, addition of monochloramine for control of biological growth, microfiltration (MF) or coagulation-sedimentation-filtration (CSF) for control of particle plugging, and in-line coagulation-microfiltration (C/MF) or CSF for control of organic adsorption. Surface water solutes of concern included organic solutes, pathogens, and taste and odor compounds. Solute mass transport was addressed by evaluation of total organic carbon (TOC), Bacillus subtilis endospores, gesomin (G), 2-methlyisoborneol (MIB), and threshold odor number (TON). This evaluation included modeling to determine the role of diffusion in solute mass transport including assessment of the homogeneous solution diffusion equation. A cellulose acetate (CA) NF was less susceptible to fouling than two polyamide (PA) NFs. NF fouling was minimized by the addition of monochloramine, lower flux, lower recovery, and with the use of a coagulant-based pretreatment (C/MF or CSF). NF surface characterization showed that the low fouling CA film was less rough and less negatively charged than the PA films. Thus the theory that a more negatively charged surface would incur less adsorptive fouling, due to charge repulsion, was not observed for these tests. The rougher surface of the PA films may have increased the number of sites for adsorption and offset the charge repulsion benefits of the negatively charged surface. The addition of monochloramine significantly reduced biodegradation and integrity loss of the CA membrane. PA membranes are inherently not biologically degradable due to their chemical structure. Monochloramination reduced the rate of fouling of the PA membrane but resulted in a gradual increase in water mass transfer coefficient and a decrease in TDS rejection over time, which indicated damage and loss of integrity of the PA membrane. Based on surface characterization by X-ray Photoelectron Spectroscopy (XPS) and Fourier Transform Infrared Spectrometry (FTIR), the PA membrane degradation appeared to be chemically-based and initiated with chlorination of amide nitrogen and/or aromatic rings, which ultimately resulted in disruption of membrane chemical structures. The recommended Integrated Membrane System to control fouling of a surface water nanofiltration system is CSF monochloramine/acid/antiscalent³monochloramine-tolerant NF. This IMS, at low flux and recovery, operated with no discernable fouling and is comparable to a groundwater nanofiltration plant with cleaning frequencies of once per six months or longer. A significant portion of the organic solutes including total organic carbon (TOC) passing through the membranes was diffusion controlled. Permeate concentration increased with increasing recovery and with decreasing flux for both PA and CA membranes. The influence was diminished for the PA membrane, due to its high rejection capabilities. Total rejection of spores used as pathogen surrogates was not achieved as spores were indigenous and high spore concentrations were used in all challenge studies; however, Integrated Membrane System spore rejection exceeded credited regulatory rejection of similar sized microorganisms by conventional treatment by several logs. Spore rejection varied by NF but only slightly by MF as size-exclusion controlled. There was no difference among spore rejection of IMS with and without in-line coagulation. Consequently, these results indicate membrane configuration (Hollow fiber>Spiral Wound) and membrane film (Composite Thin Film>CA) significantly affected spore rejection. Geosmin and methylisoborneol have molecular weights of 182 and 168 respectively, and are byproducts of algal blooms, which commonly increase taste and odor as measured by the threshold odor number (TON) in drinking water. Although these molecules are neutral and were thought to pass through NFs, challenge testing of IMS unit operations found that significant removal of TON, G and MIB was achieved by membrane processes, which was far superior to conventional processes. A CA NF consistently removed 35 to 50 percent of TON, MIB, and G, but did not achieve compliance with the TON standard of 3 units. A PA NF provided over 99 percent removal of MIB and G. Challenge tests using MIB and G indicated that size-exclusion controlled mass transfer of these compounds in NF membranes.
Show less
-
Date Issued
-
2005
-
Identifier
-
CFE0000630, ucf:46506
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000630
-
-
Title
-
Assessing Biofiltration Pretreatment for Ultrafiltration Membrane Processes.
-
Creator
-
Cumming, Andrea, Duranceau, Steven, Cooper, David, Randall, Andrew, Wang, Dingbao, Yestrebsky, Cherie, University of Central Florida
-
Abstract / Description
-
An engineered biological filtration (biofiltration) process treating a nutrient-enriched, low-alkalinity, organic-laden surface water downstream of conventional coagulation-clarification and upstream of an ultrafiltration (UF) membrane process was assessed for its treatment effectiveness. The impact of biofiltration pretreatment on UF membrane performance was evaluated holistically by investigating the native source water chemistry and extending the analysis into the drinking water...
Show moreAn engineered biological filtration (biofiltration) process treating a nutrient-enriched, low-alkalinity, organic-laden surface water downstream of conventional coagulation-clarification and upstream of an ultrafiltration (UF) membrane process was assessed for its treatment effectiveness. The impact of biofiltration pretreatment on UF membrane performance was evaluated holistically by investigating the native source water chemistry and extending the analysis into the drinking water distribution system. The biofiltration process was also compared in treatment performance to two alternative pretreatment technologies, including magnetic ion exchange (MIEX(&)#174;) and granular activated carbon (GAC) adsorption.The MIEX(&)#174;, GAC adsorption, and biologically active carbon (BAC) filtration pretreatments were integrated with conventional pretreatment then compared at the pilot-scale. Comparisons were based on collecting data regarding operational requirements, dissolved organic carbon (DOC) reduction, regulated disinfection byproduct (DBP) formation, and improvement on the downstream UF membrane operating performance. UF performance, as measured by the temperature corrected specific flux or mass transfer coefficient (MTC), was determined by calculating the percent MTC improvement relative to the existing conventional-UF process that served as the control. The pretreatment alternatives were further evaluated based on cost and non-cost considerations.Compared to the MIEX(&)#174; and GAC pretreatment alternatives, which achieved effective DOC removal (40 and 40 percent, respectively) and MTC improvement (14 and 30 percent, respectively), the BAC pretreatment achieved the lowest overall DOC removal (5 percent) and MTC improvement (4.5 percent). While MIEX(&)#174; relies on anion exchange and GAC relies on adsorption to target DOC removal, biofiltration uses microorganisms attached on the filter media to remove biodegradable DOC.Two mathematical models that establish an empirical relationship between the MTC improvement and the dimensionless alkalinity to substrate (ALK/DOC) ratio were developed. By combining the biofiltration results from the present research with findings of previous studies, an empirical relationship between the MTC improvement versus the ALK/DOC ratio was modeled using non-linear regression in Minitab(&)#174;. For surface water sources, UF MTC improvement can be simulated as a quadratic or Gaussian distribution function of the gram C/gram C dimensionless ALK/DOC ratio. According to the newly developed empirical models, biofiltration performance is optimized when the alkalinity to substrate ratio is between 10 and 14. For the first time a model has thus been developed that allows for a predictive means to optimize the operation of biofiltration as a pretreatment prior to UF membrane processes treating surface water.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0005595, ucf:50260
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005595
-
-
Title
-
FMF assay for assessing vaccine generated antibodies in a biomimetic manner.
-
Creator
-
Dhir, Vipra, Khaled, Annette, Self, William, Warren, William, University of Central Florida
-
Abstract / Description
-
Traditional functional assays such as hemagglutination inhibition (HAI) and micro-neutralization (MN) assays have been routinely used for assessing the vaccine response, since influenza vaccine has been administered in people (1940). Such assays are not always predictive regarding the protection conferred by the influenza vaccine and are not able to monitor neutralization related to stem region of influenza hemagglutinin responsible for virus membrane fusion in the endosomes. In order to...
Show moreTraditional functional assays such as hemagglutination inhibition (HAI) and micro-neutralization (MN) assays have been routinely used for assessing the vaccine response, since influenza vaccine has been administered in people (1940). Such assays are not always predictive regarding the protection conferred by the influenza vaccine and are not able to monitor neutralization related to stem region of influenza hemagglutinin responsible for virus membrane fusion in the endosomes. In order to study Influenza vaccine response in a more biomimetic manner and overcome the deficiencies of the traditional functional assays, we developed a fluorescent membrane fusion assay (fMF). The assay uses viruses labeled with Octadecyl Rhodmaine B Chloride (R18) to monitor two major neutralization pathways: blocking the attachment of virus to the target cells and blocking of virus membrane fusion in the endosomes. The latter was tested using endosomal acidification inhibitor Bafilomycin a1 which blocked membrane fusion by 85%. Specificity of the assay was tested using two different subtypes of viruses H1N1 (A/Puerto Rico/8/1934 and A/Brisbane/59/2007), and H3N2 virus (A/Aichi/68) with their respective subtype specific stem specific monoclonal antibodies: M145, Aca-1, Aca-2 (H1N1 specific) and Aca-3 (H3N2 specific). Subtype specific mAbs blocked membrane fusion, while a mismatch in virus subtype and the mAb resulted in lack of blocking. We also studied the effect of H1N1 head specific mAb Aca-4, which not only blocked attachment of the virus, but also demonstrated blocking of membrane fusion. Results were validated by testing pre- and post- sera from 2009 seasonal Influenza vaccination and to show that at higher Ab concentration the majority of virus (85%) was blocked from attaching cells, but at lower Ab concentration, where attachment could not be prevented, blocking of membrane fusion was still in effect - up to 50%. Sera screening experiments showed that sera antibodies work beyond just blocking attachment. They also may neutralize the already attached virus by blocking fusion of the viral membrane in the endosomes. The assay has the capacity to monitor blocking of attachment and fusion in a single run. Therefore, it is more representative regarding the natural process of infection and the corresponding neutralization pathways. The assay is unique in terms of assessing stem specific antibodies; stem specific response and its measurement are relevant for the advancement of a universal influenza vaccine.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0005604, ucf:50255
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005604
-
-
Title
-
REMEDIATION OF HEAVY METAL CONTAMINATION IN SEDIMENTS: APPLICATION OF IN SITU TREATMENT UTILIZING EMULSIFIED LIQUID MEMBRANE AND ZERO-VALENT METAL TECHNOLOGIES.
-
Creator
-
Maxwell, Deborah, Clausen, Christian, University of Central Florida
-
Abstract / Description
-
Heavy metal contamination of soils, sediments and groundwater presents an ongoing source of hazardous and persistent environmental pollution. How best to remediate these contaminants is the impetus of continuing research efforts. Methods include containment, ex situ and in situ techniques. A successful in situ method utilizing a combination of emulsified liquid membranes, ELM, and zero-valent metal, ZVM, and bimetals has demonstrated impressive heavy metal reduction in 100 ppm solutions of Cd...
Show moreHeavy metal contamination of soils, sediments and groundwater presents an ongoing source of hazardous and persistent environmental pollution. How best to remediate these contaminants is the impetus of continuing research efforts. Methods include containment, ex situ and in situ techniques. A successful in situ method utilizing a combination of emulsified liquid membranes, ELM, and zero-valent metal, ZVM, and bimetals has demonstrated impressive heavy metal reduction in 100 ppm solutions of Cd, Cu, Ni, Pb, Cr and U. This promising in situ method has been employed by the Industrial Chemistry Laboratory at the University of Central Florida and it has demonstrated considerable success in treating several environmental threats. Contaminated soils, surfaces, sediments and groundwater with offending agents such as trichloroethene, polychorobiphenyls and heavy metals have been treated utilizing emulsified liquid membrane systems containing zero-valent iron or bimetal particles. In vial studies, lead spiked sediments have shown repeatable 60% removal of lead after seven days of treatment. A persistent pattern emerged at ten days whereupon remediation levels began to drop. The current study was established to determine the reason for the decline at ten days and beyond. Questions addressed: Does the formation of an impeding oxide layer diminish the remediation capacity of the iron/magnesium system? Does the emulsion reach a maximum capacity to withdraw the contaminant? Do the soil components or the soil structure interfere with the access to the contaminant? This study has yielded insight into the reasons emulsified liquid membrane systems containing zero-valent metals achieved maximum lead removal at day seven, and thereafter begin to lose their effectiveness. A three part study was implemented to address and to answer the three questions pertaining to the consistent pattern of diminishing remediation levels exhibited at day ten and beyond. Initially, from Study I results it appeared that the formation of an impeding oxide layer on the bi-metal which was inside the emulsion droplet and which plated or precipitated with the lead was not occurring at day ten. Results indicated that the iron/magnesium was still capable of removing lead. Furthermore, from Study II results the emulsion dose injected appeared adequate to remove the lead, meaning that the emulsion had not reached its maximum capacity for remediation. The emulsion dose was not a limiting factor. Lastly, Study III results seemed to indicate that the drop in remediation after day seven pertained to the soil structure. There appeared to be some merit to the idea that with aging of the sediment, the lead was diffusing and migrating to some inaccessible interior sites within the sediment particles. Additionally, indications from day ten and day fourteen delineated that a second emulsion dose injection might restore lead removal levels to approach those first observed at day seven and consequently be a useful field application. In order to explore the effectiveness of injecting a second dose of emulsion, another vial study was implemented. The typical pattern of observing sixty percent maximum lead removal at day seven was observed. In separate groups, a second injection of emulsion was added at day five, and then for another vial series, a second dose was added at day seven. The second emulsion dose treatment for either day five or day seven did not yield any increases in percent lead removal. Another theory emerged after viewing micrographs of recovered iron/magnesium compared with fresh ball-milled bimetal. In addition, scanning electron microscopy appeared to confirm the explanation that the emulsified zero-valent metal system might be compromised after day seven. This would lead to exposure of the iron/magnesium to the air and the elements. Corrosion of the bimetal might be occurring. With time, release of the plated or precipitated lead back into the sediment mixture could follow. The results of Study I had led to the conclusion that an impeding oxide layer had not formed; however, this conclusion may have been premature because the recovered iron/magnesium was exposed to lead solution in the vial study. Perhaps if the recovered iron/magnesium was inserted back into an emulsion and injected into lead spiked sediments the percent lead removed might give a more accurate picture of the iron/magnesium's capability to continue performing remediation. Remediation of sediments contaminated with lead is a complicated task because of the complex nature of sediment components. Emulsified liquid membranes utilizing zero-valent bimetals has repeatedly demonstrated impressive results at day seven; however, this treatment method is not without its limitations. Optimal results appear to be gained at day seven after emulsion injection. The bimetal and plated or precipitated lead must be removed at that point; otherwise the effective remediation of the contaminant is progressively reversed.
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001786, ucf:47274
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001786
-
-
Title
-
HELICAL PACKING REGULATES STRUCTURAL TRANSITIONS IN BAX.
-
Creator
-
Tschammer, Nuska, Khaled, Annette, University of Central Florida
-
Abstract / Description
-
Apoptosis is essential for development and the maintenance of cellular homeostasis and is frequently dysregulated in disease states. Proteins of the BCL-2 family are key modulators of this process and are thus ideal therapeutic targets. In response to diverse apoptotic stimuli, the pro-apoptotic member of BCL-2 family, BAX, redistributes from the cytosol to the mitochondria or endoplasmic reticulum and primes cells for death. The structural changes that enable this lethal protein to...
Show moreApoptosis is essential for development and the maintenance of cellular homeostasis and is frequently dysregulated in disease states. Proteins of the BCL-2 family are key modulators of this process and are thus ideal therapeutic targets. In response to diverse apoptotic stimuli, the pro-apoptotic member of BCL-2 family, BAX, redistributes from the cytosol to the mitochondria or endoplasmic reticulum and primes cells for death. The structural changes that enable this lethal protein to transition from a cytosolic form to a membrane-bound form remain poorly understood. Elucidating this process is a necessary step in the development of BAX as a novel therapeutic target for the treatment of cancer, as well as autoimmune and neurodegenerative disorders. A three-part study, utilizing computational modeling and biological assays, was used to examine how BAX, and similar proteins, transition to membranes. The first part tested the hypothesis that the C-terminal α9 helix regulates the distribution and activity of BAX by functioning as a "molecular switch" to trigger conformational changes that enable the protein to redistribute from the cytosol to mitochondrial membrane. Computational analysis, tested in biological assays, revealed a new finding: that the α9 helix can dock into a hydrophobic groove of BAX in two opposite directions in a self-associated, forward orientation and a previously, unknown reverse orientation that enables dimerization and apoptosis. Peptides, made to mimic the α9-helix, were able to induce the mitochondrial translocation of BAX, but not when key residues in the hydrophobic groove were mutated. Such findings indicate that the α9 helix of BAX can function as a "molecular switch" to mediate occupancy of the hydrophobic groove and regulate the membrane-binding activity of BAX. This new discovery contributes to the understanding of how BAX functions during apoptosis and can lead to the design of new therapeutic approaches based on manipulating the occupancy of the hydrophobic groove. The second and third parts of the study used computational modeling to examine how the helical stability of proteins relates to their ability to functionally transition. Analysis of BAX, as a prototypical transitioning protein, revealed that it has a broad variation in the distribution of its helical interaction energy. This observation led to the hypothesis tested, that proteins which undergo 3D structural transitions during execution of their function have broad variations in the distribution of their helical interaction energies. The result of this study, after examination of a large group of all-alpha proteins, was the development of a novel, predictive computational method, based on measuring helical interactions energies, which can be used to identify new proteins that undergo structural transitioning in the execution of their function. When this method was used to examine transitioning in other members the BCL-2 family, a strong agreement with the published experimental findings resulted. Further, it was revealed that the binding of a ligand, such as a small peptide, to a protein can have significant stabilizing or destabilizing influences that impact upon the activation and function of the protein. This computational analysis thus contributes to a better understanding of the function and regulation of the BCL-2 family members and also offers the means by which peptide mimics that modulate protein activity can be designed for testing in therapeutic endeavors.
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001865, ucf:47392
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001865
-
-
Title
-
THE EFFECT OF K562-IL21-2 PLASMA MEMBRANE PARTICLES ON THE PROLIFERATION OF NATURAL KILLER CELLS TO FIGHT CANCER.
-
Creator
-
Prophete, Michelle, Copik, Alicja, University of Central Florida
-
Abstract / Description
-
Immunotherapy has emerged as a current and future paradigm of cancer treatment, which utilizes the body's immune system to eradicate cancer. Natural Killer (NK) cells as part of the innate immune system have immense potential in their anti-tumor cytotoxic activities and host cell surveillance properties. NK cells comprise approximately five to fifteen percent of peripheral blood lymphocytes and can be proliferated in vitro using recently developed methods with co-cultures with feeder cells ...
Show moreImmunotherapy has emerged as a current and future paradigm of cancer treatment, which utilizes the body's immune system to eradicate cancer. Natural Killer (NK) cells as part of the innate immune system have immense potential in their anti-tumor cytotoxic activities and host cell surveillance properties. NK cells comprise approximately five to fifteen percent of peripheral blood lymphocytes and can be proliferated in vitro using recently developed methods with co-cultures with feeder cells (derived from engineered tumor cells) or plasma membrane (PM) particles, produced from the fore mentioned feeder cells, in combination with soluble cytokines. For efficient growth and maintenance of these NK cells, Interleukin-2 (IL-2) is utilized. IL-2 in solution, through receptor mediated signaling, stimulates proliferation of T-cells and NK cells. NK cells have lower responsiveness to IL-2 and consequently require a larger systemic dose to stimulate them as opposed to competing cell populations that have higher expression of receptors for IL-2, such as T-cells, which can have the effect of lower effective stimulation of NK cell growth. Such difference in the stimulatory capability of IL-2 toward NK cells and the short circulation lifetime of soluble IL-2 require higher dosages of soluble IL-2 for effective in vivo NK cell proliferation for therapeutic application against cancer, but is toxic. Therefore establishing another form of IL-2 delivery that improves its specific targeting to NK cells would be beneficial and may be crucial for novel therapeutic improvement. The Copik Laboratory has made an IL-2 fusion protein construct having a membrane anchor for expression of membrane-bound IL-2 on K562-41bbl-21 cells (K562-IL21). K562-IL21 cells are selectively recognized by NK cells and stimulate their proliferation and cytotoxicity. Hence, a K562-IL21 membrane-bound IL-2 form should be targeted to NK cells with IL-2 delivery. K562-IL21-2 cells were then used to prepare PM21-2 particles which have the potential to provide NK cell targeted, long-lived form of IL-2 for use as an injectable drug for in vivo adjuvant stimulation of NK cells. The presence of IL-2 on the in the PM21-2 particle product was verified by Western blot, and ELISA. Particle preparations from the modified K562 cells should possess characteristics that allow them to possibly replace soluble IL-2 and more specifically increase the numbers or anti-tumor activity of NK cell populations. The effect of PM21-2 particles was studied in in vitro culture based experiments, which tested the effectiveness the PM21-2 particles to induce selective NK cells expansion as compared to PM21 particles in the presence or absence of soluble IL-2.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFH2000353, ucf:45918
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFH2000353
-
-
Title
-
Reducing Sulfuric Acid Pretreatment in a Nanofiltration Process Treating Surficial Groundwater.
-
Creator
-
Higgins, Carlyn, Duranceau, Steven, Lee, Woo Hyoung, Sadmani, A H M Anwar, University of Central Florida
-
Abstract / Description
-
Nanofiltration (NF) is a pressure driven membrane process employed in drinking water treatment that requires pretreatment for reliable operation. The objective of this research was to determine if NF membranes can proficiently operate with a decreased or eliminated dose of sulfuric acid pretreatment. When used as pretreatment, sulfuric acid prevents calcium carbonate scaling on NF membranes, yet is costly, hazardous, and imparts high sulfate concentrations to NF feed and concentrate streams....
Show moreNanofiltration (NF) is a pressure driven membrane process employed in drinking water treatment that requires pretreatment for reliable operation. The objective of this research was to determine if NF membranes can proficiently operate with a decreased or eliminated dose of sulfuric acid pretreatment. When used as pretreatment, sulfuric acid prevents calcium carbonate scaling on NF membranes, yet is costly, hazardous, and imparts high sulfate concentrations to NF feed and concentrate streams. To conduct this research, a 0.324 million gallon per day (MGD) NF pilot plant was operated for 3,855 run-hours at a flux rate of 15 gallons per square foot-day. The NF pilot unit's process performance, productivity, and water quality were monitored while the sulfuric acid dose was gradually decreased, controlled by monitoring pH that ranged from pH 6.5 (80 mg/L sulfuric acid dose) to pH 7.0 (no sulfuric acid dose). NF pilot productivity, as measured by specific flux, was found to decline when sulfuric acid was eliminated by 2.33 percent, 9.61 percent, and 4.08 percent in the first stage, second stage, and total pilot system, respectively, with no distinguishable increase in pressure drop. Noticeable water quality trends include approximately 75 percent sulfate decrease in feed and concentrate streams, and 20 percent increase of calcium hardness and alkalinity in the permeate stream. After piloting, superimposed elemental imaging analysis revealed that the second stage, tail-end membrane surface was fouled with iron disulfide, calcium carbonate, clay, and natural organic matter. However, flux recovered to normal operating conditions after a membrane cleaning was performed. Results of the pilot study indicated that sulfuric acid could be eliminated from the full-scale NF pretreatment process; however, membrane cleaning frequencies could increase. If applied to the full-scale NF process, elimination of sulfuric acid pretreatment would reduce annual chemical costs by over $70,000.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFE0007287, ucf:52148
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007287
-
-
Title
-
INTERFACIAL BEHAVIOR IN POLYMER DERIVED CERAMICS AND SALT WATER PURIFICATION VIA 2D MOS2.
-
Creator
-
Li, Hao, An, Linan, Jung, YeonWoong, Zhai, Lei, Feng, Xiaofeng, Yu, Xiaoming, University of Central Florida
-
Abstract / Description
-
In the present dissertation, the behavior of the internal potential barrier in a polymer-derived amorphous SiAlCN ceramic was studied by measuring its complex impedance spectra at various dc bias as well as different testing and annealing temperatures. The complex impedancespectra of the polymer-derived a-SiAlCN were measured under various dc bias voltages in a temperature range between 50 and 150?(&)deg;C, as well as different annealing temperatures (1100-1400 (&)deg;C). All spectra,...
Show moreIn the present dissertation, the behavior of the internal potential barrier in a polymer-derived amorphous SiAlCN ceramic was studied by measuring its complex impedance spectra at various dc bias as well as different testing and annealing temperatures. The complex impedancespectra of the polymer-derived a-SiAlCN were measured under various dc bias voltages in a temperature range between 50 and 150?(&)deg;C, as well as different annealing temperatures (1100-1400 (&)deg;C). All spectra, regardless of temperature and bias, consist of two semi-circular arcs,corresponding to the free-carbon phase and the interface, respectively. The impedance of the free-carbon phase is independent of the bias, while that of the interface decreased significantly with increasing dc bias. It is shown that the change of the interfacial capacitance with the bias can be explained using the double Schottky barrier model. The charge-carrier concentration and potential barrier height were estimated by comparing the experimental data and the model.The results revealed that increasing testing temperature led to an increased charge-carrier concentration and a reduced barrier height, both following Arrhenius dependence, whereas the increase in annealing temperature resulted in increased charge-carrier concentration and barrier height. The phenomena were explained in terms of the unique bi-phasic microstructures of the material. The research findings reveal valuable microstructural information of temperaturedependent properties of polymer derived ceramics, and should contribute towards more precise understanding and control of the electrical as well as dielectric properties of polymer derivedceramics. Furthermore, the desalination performances and underlying mechanisms of two-dimensional CVD-grown MoS2 layers membranes have been experimentally assessed. Based on a successful large-area few-layer 2D materials growth, transfer and integration method, the 2D MoS2 layers membranes showed preserved chemical and microstructural integrity after integration. The few-layer 2D MoS2 layers demonstrated superior desalination capability towards various types of seawater salt solutions approaching theoretically-predicted values. Such performances are attributed to the dimensional and geometrical effect, as well as the electrostatic interaction of the inherently-present CVD-induced atomic vacancies for governingboth water permeation and ionic sieving at the solution/2D-layer interfaces.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007830, ucf:52813
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007830
-
-
Title
-
MODELING OF MEMBRANE SOLUTE MASSTRANSFER IN RO/NF MEMBRANE SYSTEMS.
-
Creator
-
Zhao, Yu, Taylor, James S., University of Central Florida
-
Abstract / Description
-
Five articles describing the impact of surface characteristics, and development of mass transfer models for diffusion controlled membrane applications are published in this dissertation. Article 1 (Chapter 3) describes the impact of membrane surface characteristics and NOM on membrane performance for varying pretreatment and membranes during a field study. Surface charge, hydrophobicity and roughness varied significantly among the four membranes used in the study. Membrane surface...
Show moreFive articles describing the impact of surface characteristics, and development of mass transfer models for diffusion controlled membrane applications are published in this dissertation. Article 1 (Chapter 3) describes the impact of membrane surface characteristics and NOM on membrane performance for varying pretreatment and membranes during a field study. Surface charge, hydrophobicity and roughness varied significantly among the four membranes used in the study. Membrane surface characteristics, NOM and SUVA measurements were used to describe mass transfer in a low pressure RO integrated membrane system. Inorganic and organic solute and water mass transfer coefficients were systematically investigated for dependence on membrane surface properties and NOM mass loading. Inorganic MTCs were accurately described by a Gaussian distribution curve. Water productivity, NOM rejection and inorganic rejection increased as membrane surface charge and NOM loading increased. Inorganic MTCs were also correlated to surface hydrophobicity and surface roughness. The permeability change of identical membranes was related to NOM loading, hydrophobicity and roughness. Organic fouling as measured by water, organic and inorganic mass transfer was less for membranes with higher hydrophilicity and roughness. Article 2 (Chapter 4) describes the development of a diffusion controlled solute mass transfer model to assess membrane performance over time. The changing mass transfer characteristics of four low-pressure reverse osmosis (LPRO) membranes was correlated to feed stream water quality in a 2000 hour pilot study. Solute mass transfer coefficients (MTCs) were correlated to initial solute MTCs, solute charge, feed water temperature, monochloramine loading and organic loading (UV254). The model can be used to predict cleaning frequency, permeate water quality and sensitivity of permeate water quality to variation of temperature, organic and monochloramine mass loading.Article 3 (Chapter 5) describes a comparison of the long standing method of assessing membrane performance (ASTM D 45160 and another approach using mass transfer coefficients (MTCs) from the homogenous solution diffusion model (HSDM) using a common data set, water productivity and standardized salt passage. Both methods were shown to provide identical assessments of water productivity, however different assessments of salt passage. ASTM D 4516 salt passage is normalized for pressure and concentration and does not show the effects of flux, recovery, temperature or specific foulants on salt passage. However the MTC HSDM method is shown to consider all those effects and can be easily used to predict membrane performance at different sites and times of operation, whereas ASTM D 45160 can not. The HSDM MTC method of membrane evaluation is more versatile for assessment of membrane performance at varying sites and changing operational conditions.Article 4 (Chapter 6) describes the development of a fully integrated membrane mass transfer model that considers concentration, recovery and osmotic pressure for prediction of permeate water quality and required feed stream pressures. Osmotic pressure is incorporated into the model using correction coefficients that are calculated from boundary conditions determined from stream osmotic pressures of the feed and concentrate streams. Comparison to homogenous solution diffusion model (HSDM) with and without consideration of osmotic pressure and verification of IOPM using independently developed data from full and pilot scale plants is presented. The numerical simulation and statistical assessment show that osmotic pressure corrected models are superior to none-osmotic pressure corrected models, and that IOPM improves model predictability.Article 5 (Chapter 7) describes the development and comparison of a modified solution diffusion model and two newly developed artificial neural network models to existing mechanistic or empirical model
Show less
-
Date Issued
-
2004
-
Identifier
-
CFE0000026, ucf:52859
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000026
-
-
Title
-
Evaluating Corrosion Control Alternatives for a Reverse Osmosis, Nanofiltration and Anion-Exchange Blended Water Supply.
-
Creator
-
Wilder, Rebecca, Duranceau, Steven, Randall, Andrew, Zhang, Husen, University of Central Florida
-
Abstract / Description
-
The research reported herein describes the study activities performed by University of Central Florida (UCF) on behalf of the Town of Jupiter Water Utilities (Town). The Town recently changed its water treatment operations from a combination of reverse osmosis (RO), lime softening (LS) and anion-exchange (IX) to a combination of RO, IX and nanofiltration (NF). Although this treatment change provided enhanced water to the surrounding community in terms of better contaminant removal and reduced...
Show moreThe research reported herein describes the study activities performed by University of Central Florida (UCF) on behalf of the Town of Jupiter Water Utilities (Town). The Town recently changed its water treatment operations from a combination of reverse osmosis (RO), lime softening (LS) and anion-exchange (IX) to a combination of RO, IX and nanofiltration (NF). Although this treatment change provided enhanced water to the surrounding community in terms of better contaminant removal and reduced DBP formation potential, integration of the NF process altered finished water quality parameters including pH, alkalinity and hardness. There was concern that these changes could result in secondary impacts related to accelerated corrosion of distribution system components and subsequent regulatory compliance. In addition, replacement of the LS process altered the in-plant blending operations by creating an unstable intermediate blend composed of RO and IX waters. There were concerns that this intermediate blend was affecting the integrity of in-plant hydraulic conveyance components.UCF developed a corrosion monitoring study to assess the potential impacts related to internal corrosion, water quality and regulatory compliance after integrating NF into the existing water supply. The intended purpose was to further highlight the complexities of corrosion, describe a unique approach to corrosion monitoring as well as offer various recommendations for corrosion control in a system that relies on a blended water supply. Research was conducted in three phases to address the in-plant and distribution system corrosion issues separately and identify appropriate corrosion control treatment alternatives. The three test phases included: a baseline conditions assessment to compare corrosion of the intermediate RO-IX blend with the finished water blend (RO-IX-NF); an in-plant corrosion control evaluation; and a distribution system corrosion control evaluation.A test apparatus was constructed and operated at the Town's facilities to monitor corrosion activity of mild steel, copper and lead solder metal components. The test apparatus consisted of looped PVC pipe segments housed with electrochemical probes and metal coupons to monitor corrosion rates of the metallic components. Electrochemical probes containing metal electrodes were used to obtain instantaneous corrosion rates by means of the Linear Polarization Resistance (LPR) technique while the metal coupons were gravimetrically evaluated for weight loss. The electrochemical probes permitted daily monitoring of each metal's corrosion rates while metal coupons were analyzed at the conclusion of testing and used for comparison. Different test waters flowed through the corrosion rack according to each test phase and relative corrosion rates were compared to evaluate corrosion control techniques.Study findings indicated that the intermediate blend was more corrosive, in general, then the final blend; however, research also indicated that the final blend of water was increasing lead and copper concentrations within the distribution system. An orthophosphate corrosion inhibitor was evaluated for in-plant corrosion control. The inhibitor's performance was assessed by comparing mild steel corrosion rates with and without the chemical. In addition, secondary impacts related to introduction of the chemical were evaluated by pre-corroding the metallic components prior to the introduction of the inhibitor. Results indicated that the inhibitor marginally decreased corrosion rates and increased the turbidity of the water supply. Based on these observations, it was concluded that the inhibitor was not a viable solution for in-plant corrosion control. To resolve in-plant corrosion issues, recommendations were made for modification of in-plant blending operations to eliminate the corrosive intermediate blend from the process allowing the RO, IX and NF treated waters to be blended in a common location. The effectiveness of a poly/ortho blended phosphate chemical inhibitor was evaluated for reducing lead and copper corrosion to resolve distribution corrosion issues. A 50/50 poly/ortho blend was selected because of its analogous use in similar municipal water facilities. Metallic corrosion rates, particularly lead and copper, were compared with and without the inhibitor to assess the performance of the chemical. Like the previous test phase, the metallic components were pre-corroded prior to the chemical's introduction to determine if secondary impacts could result from its presence. Results indicated that lead and copper corrosion rates were lower in the presence of the inhibitor, and secondary impacts related to increased turbidity were not observed for this chemical. Based on these results, it was recommended that a poly/ortho blended phosphate be used to decrease lead and copper corrosion within the Town's distribution system.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004460, ucf:49349
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004460
-
-
Title
-
Electrochemical Studies of Nanoscale Composite Materials as Electrodes in PEM Fuel Cells.
-
Creator
-
Anderson, Jordan, Zhai, Lei, Blair, Richard, Hampton, Michael, Zou, Shengli, Seal, Sudipta, University of Central Florida
-
Abstract / Description
-
Polymer electrolyte membrane fuel cells (PEMFCs) have recently acquired much attention as alternatives to combustion engines for power conversion. The primary interest in fuel cell technology is the possibility of 60% power conversion efficiency as compared to the 30% maximum theoretical efficiency limited to combustion engines and turbines. Although originally conceived to work with hydrogen as a fuel, difficulties relating to hydrogen storage have prompted much effort in using other fuels....
Show morePolymer electrolyte membrane fuel cells (PEMFCs) have recently acquired much attention as alternatives to combustion engines for power conversion. The primary interest in fuel cell technology is the possibility of 60% power conversion efficiency as compared to the 30% maximum theoretical efficiency limited to combustion engines and turbines. Although originally conceived to work with hydrogen as a fuel, difficulties relating to hydrogen storage have prompted much effort in using other fuels. Small organic molecules such as alcohols and formic acid have shown promise as alternatives to hydrogen in PEMFCs due to their higher stability at ambient conditions. The drawbacks for using these fuels in PEMFCs are related to their incomplete oxidation mechanisms, which lead to the production of carbon monoxide (CO). When carbon monoxide is released in fuel cells it binds strongly to the platinum anode thus limiting the adsorption and subsequent oxidation of more fuel. In order to promote the complete oxidation of fuels and limit poisoning due to CO, various metal and metal oxide catalysts have been used.Motivated by promising results seen in fuel cell catalysis, this research project is focused on the design and fabrication of novel platinum-composite catalysts for the electrooxidation of methanol, ethanol and formic acid. Various Pt-composites were fabricated including Pt-Au, Pt-Ru, Pt-Pd and Pt-CeO2 catalysts. Electrochemical techniques were used to determine the catalytic ability of each novel composite toward the electrooxidation of methanol, ethanol and formic acid. This study indicates that the novel composites all have higher catalytic ability than bare Pt electrodes. The increase in catalytic ability is mostly attributed to the increase in CO poison tolerance and promotion of the complete oxidation mechanism of methanol, ethanol and formic acid. Formulations including bi- and tri-composite catalysts were fabricated and in many cases show the highest catalytic oxidation, suggesting tertiary catalytic effects. The combination of bi-metallic composites with ceria also showed highly increased catalytic oxidation ability. The following dissertation expounds on the relationship between composite material and the electrooxidation of methanol, ethanol and formic acid. The full electrochemical and material characterization of each composite electrode is provided.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004510, ucf:49264
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004510
-
-
Title
-
Anthropogenic Organic Chemical Removal from a Surficial Groundwater and Mass Transfer Modeling in a Nanofiltration Membrane Process.
-
Creator
-
Jeffery, Samantha, Duranceau, Steven, Lee, Woo Hyoung, Sadmani, A H M Anwar, Yestrebsky, Cherie, University of Central Florida
-
Abstract / Description
-
This dissertation reports on research related to trace organic compounds (TrOCs) in surficial groundwater supplies and their subsequent removal from nanofiltration (NF) membranes. The research was conducted along coastal South Florida in cooperation with the Town of Jupiter Water Utilities, Jupiter, FL (Town). The focus of the research was to determine the extent of reclaimed water impacts on surficial groundwater supplies and subsequent effects on the Town's NF water treatment plant. Routine...
Show moreThis dissertation reports on research related to trace organic compounds (TrOCs) in surficial groundwater supplies and their subsequent removal from nanofiltration (NF) membranes. The research was conducted along coastal South Florida in cooperation with the Town of Jupiter Water Utilities, Jupiter, FL (Town). The focus of the research was to determine the extent of reclaimed water impacts on surficial groundwater supplies and subsequent effects on the Town's NF water treatment plant. Routine monitoring of fourteen TrOCs in reclaimed water and at the water treatment facility revealed varying degrees of TrOC detection in the environment. Certain TrOCs, including caffeine and DEET, were detected in a majority of the water sampling locations evaluated in this work. However, subsequent dilution with highly-treated reverse osmosis (RO) permeate from alternative supplies resulted in TrOCs below detection limits in potable water at the point-of-entry (POE). Pilot testing was employed to determine the extent of TrOC removal by NF. Prior to evaluating TrOC removal, hydraulic transients within the pilot process were first examined to determine the required length of time the pilot needed to reach steady-state. The transient response of a center-port NF membrane process was evaluated using a step-input dose of a sodium chloride solution. The pilot was configured as a two-stage, split-feed, center-exit, 7:2 pressure vessel array process, where the feed water is fed to both ends of six element pressure vessels, and permeate and concentrate streams are collected after only three membrane elements. The transient response was described as a log-logistic system with a maximum delay time of 285 seconds for an 85% water recovery and 267 gallon per minute feed flowrate.Eleven TrOC pilot unit experiments were conducted with feed concentrations ranging from 0.52 to 4,500 ?g/L. TrOC rejection was well-correlated with compound molecular volume and polarizability, with coefficient of determination (R2) values of 0.94. To enhance this correlation, an extensive literature review was conducted and independent literature sources were correlated with rejection. Literature citations reporting the removal effectiveness of an additional sixty-one TrOCs by loose NF membranes (a total of 95 data points) were found to be well-correlated with molecular volume and polarizability, with R2 values of 0.72 and 0.71, respectively.Of the TrOC's detected during this research, the anthropogenic solute caffeine was selected to be modeled using the homogeneous solution diffusion model (HSDM) and the HSDM with film theory (HSDM-FT). Mass transfer coefficients, K_w (water) K_s (caffeine), and k_b (caffeine back-transport) were determined experimentally, and K_s was also determined using the Sherwood correlation method. Findings indicate that caffeine transport through the NF pilot could be explained using experimentally determined K_s values without incorporating film theory, since the HSDM resulted in a better correlation between predicted and actual caffeine permeate concentrations compared to the HSDM-FT and the HSDM using K_s obtained using Sherwood applications. Predicted versus actual caffeine content was linearly compared, revealing R2 values on the order of 0.99, 0.96, and 0.99 for the HSDM without FT, HSDM-FT, and HSDM using a K_s value obtained using the Sherwood correlation method. However, the use of the HSDM-FT and the Sherwood number resulted in the over-prediction of caffeine concentrations in permeate streams by 27 percent and 104 percent, respectively.
Show less
-
Date Issued
-
2016
-
Identifier
-
CFE0006331, ucf:51545
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006331
-
-
Title
-
Modeling Mass Transfer and Assessing Cost and Performance of a Hollow Fiber Nanofiltration Membrane Process.
-
Creator
-
Yonge, David, Duranceau, Steven, Sadmani, A H M Anwar, Lee, Woo Hyoung, Clausen, Christian, University of Central Florida
-
Abstract / Description
-
Bench-scale water treatment testing of three next generation hollow-fiber (HF) nanofiltration (NF) membranes was conducted to characterize divalent ion rejection capabilities and investigate removal mechanisms. Existing mathematical models were investigated to describe solute transport using synthetic magnesium sulfate solutions including the size exclusion model, homogenous solution diffusion (HSD) model, dimensional analysis, and the HSD model incorporating film theory. Solute transport for...
Show moreBench-scale water treatment testing of three next generation hollow-fiber (HF) nanofiltration (NF) membranes was conducted to characterize divalent ion rejection capabilities and investigate removal mechanisms. Existing mathematical models were investigated to describe solute transport using synthetic magnesium sulfate solutions including the size exclusion model, homogenous solution diffusion (HSD) model, dimensional analysis, and the HSD model incorporating film theory. Solute transport for two of the membranes were described by HSD theory and were predictive of their 90% divalent ion removal. A third membrane was more accurately modeled using size exclusion and was found to be predictive of its 40% divalent ion rejection. Feed ionic strength variation was shown to significantly impact rejection. In this work, semi-empirical models were developed to describe solute transport under varying feed ionic strength conditions. Bench-scale testing of aerated groundwater confirmed the HFNF membrane divalent ion rejection capabilities. Pilot testing of a commercially available HFNF membrane was shown to remove divalent ions and dissolved organic carbon (DOC) by 10% and 25%, respectively. Financial evaluations indicated that HFNF offered cost savings over traditional spiral-wound (SW) NF, $0.60/kgal versus $0.85/kgal operating costs, respectively. Traditional SWNF membranes produced superior water quality achieving 90% divalent ion removal and 96% DOC removal but required media and membrane filtration pretreatment. When considering the costs of constructing a new 2 million gallon per day (permeate) HFNF process, conceptual cost comparisons revealed that HFNF technologies could reduce capital costs by approximately $1 million, and operating costs by $0.27/kgal for an 85% recovery plant.
Show less
-
Date Issued
-
2016
-
Identifier
-
CFE0006549, ucf:51346
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006549
-
-
Title
-
Brain stethoscope: A non-invasive method for monitoring intracranial pressure.
-
Creator
-
Azad, Md Khurshidul, Mansy, Hansen, Kassab, Alain, Bhattacharya, Samik, University of Central Florida
-
Abstract / Description
-
Monitoring intracranial pressure (ICP) is important for patients with increased intracranial pressure. Invasive methods of ICP monitoring include lumbar puncture manometry, which requires high precision, is costly, and can lead to complications. Non-invasive monitoring of ICP using tympanic membrane pulse (TMp) measurement can provide an alternative monitoring method that avoids such complications. In the current study, a piezo based sensor was designed, constructed and used to acquire TMp...
Show moreMonitoring intracranial pressure (ICP) is important for patients with increased intracranial pressure. Invasive methods of ICP monitoring include lumbar puncture manometry, which requires high precision, is costly, and can lead to complications. Non-invasive monitoring of ICP using tympanic membrane pulse (TMp) measurement can provide an alternative monitoring method that avoids such complications. In the current study, a piezo based sensor was designed, constructed and used to acquire TMp signals. The results showed that tympanic membrane waveform changed in morphology and amplitude with increased ICP, which was induced by changing subject position using a tilt table. In addition, the results suggest that TMp are affected by breathing, which has small effects on ICP. The newly developed piezo based brain stethoscope may be a way to monitor patients with increased intracranial pressure thus avoiding invasive ICP monitoring and reducing associated risk and cost.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0006972, ucf:51643
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006972
Pages