Current Search: Modal Analysis (x)
View All Items
- Title
- Characterization of Dynamic Structures Using Parametric and Non-parametric System Identification Methods.
- Creator
-
Al Rumaithi, Ayad, Yun, Hae-Bum, Catbas, Necati, Mackie, Kevin, University of Central Florida
- Abstract / Description
-
The effects of soil-foundation-structure (SFS) interaction and extreme loading on structural behaviors are important issues instructural dynamics. System identification is an important technique to characterize linear and nonlinear dynamic structures.The identification methods are usually classified into the parametric and non-parametric approaches based on how to modeldynamic systems. The objective of this study is to characterize the dynamic behaviors of two realistic civil...
Show moreThe effects of soil-foundation-structure (SFS) interaction and extreme loading on structural behaviors are important issues instructural dynamics. System identification is an important technique to characterize linear and nonlinear dynamic structures.The identification methods are usually classified into the parametric and non-parametric approaches based on how to modeldynamic systems. The objective of this study is to characterize the dynamic behaviors of two realistic civil engineeringstructures in SFS configuration and subjected to impact loading by comparing different parametric and non-parametricidentification results. First, SFS building models were studied to investigate the effects of the foundation types on the structural behaviors underseismic excitation. Three foundation types were tested including the fixed, pile and box foundations on a hydraulic shaketable, and the dynamic responses of the SFS systems were measured with the instrumented sensing devices.Parametric modal analysis methods, including NExT-ERA, DSSI, and SSI, were studied as linear identification methodswhose governing equations were modeled based on linear equations of motion. NExT-ERA, DSSI, and SSI were used toanalyze earthquake-induced damage effects on the global behavior of the superstructures for different foundation types.MRFM was also studied to characterize the nonlinear behavior of the superstructure during the seismic events. MRFM is anonlinear non-parametric identification method which has advantages to characterized local nonlinear behaviors using theinterstory stiffness and damping phase diagrams. The major findings from the SFS study are: *The investigated modal analysis methods identified the linearized version of the model behavior. The change of globalstructural behavior induced by the seismic damage could be quantified through the modal parameter identification. Thefoundation types also affected the identification results due to different SFS interactions. The identification accuracy wasreduced as the nonlinear effects due to damage increased. *MRFM could characterize the nonlinear behavior of the interstory restoring forces. The localized damage could bequantified by measuring dissipated energy of each floor. The most severe damage in the superstructure was observed withthe fixed foundation. Second, the responses of a full-scale suspension bridge in a ship-bridge collision accident were analyzed to characterizethe dynamic properties of the bridge. Three parametric and non-parametric identification methods, NExT-ERA, PCA andICA were used to process the bridge response data to evaluate the performance of mode decomposition of these methodsfor traffic, no-traffic, and collision loading conditions. The PCA and ICA identification results were compared with those ofNExT-ERA method for different excitation, response types, system damping and sensor spatial resolution. The major findings from the ship-bridge collision study include: *PCA was able to characterize the mode shapes and modal coordinates for velocity and displacement responses. Theresults using the acceleration were less accurate. The inter-channel correlation and sensor spatial resolution had significanteffects on the mode decomposition accuracy. *ICA showed the lowest performance in this mode decomposition study. It was observed that the excitation type andsystem characteristics significantly affected the ICA accuracy.
Show less - Date Issued
- 2014
- Identifier
- CFE0005567, ucf:50295
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005567
- Title
- The Effects of Assumption on Subspace Identification Methods Using Simulation and Experimental Data.
- Creator
-
Kim, Yoonhwak, Yun, Hae-Bum, Catbas, Fikret, Mackie, Kevin, Nam, Boo Hyun, Behal, Aman, University of Central Florida
- Abstract / Description
-
In the modern dynamic engineering field, experimental dynamics is an important area of study. This area includes structural dynamics, structural control, and structural health monitoring. In experimental dynamics, methods to obtain measured data have seen a great influx of research efforts to develop an accurate and reliable experimental analysis result. A technical challenge is the procurement of informative data that exhibits the desired system information. In many cases, the number of...
Show moreIn the modern dynamic engineering field, experimental dynamics is an important area of study. This area includes structural dynamics, structural control, and structural health monitoring. In experimental dynamics, methods to obtain measured data have seen a great influx of research efforts to develop an accurate and reliable experimental analysis result. A technical challenge is the procurement of informative data that exhibits the desired system information. In many cases, the number of sensors is limited by cost and difficulty of data archive. Furthermore, some informative data has technical difficulty when measuring input force and, even if obtaining the desired data were possible, it could include a lot of noise in the measuring data. As a result, researchers have developed many analytical tools with limited informative data. Subspace identification method is used one of tools in these achievements.Subspace identification method includes three different approaches: Deterministic Subspace Identification (DSI), Stochastic Subspace Identification (SSI), and Deterministic-Stochastic Subspace Identification (DSSI). The subspace identification method is widely used for fast computational speed and its accuracy. Based on the given information, such as output only, input/output, and input/output with noises, DSI, SSI, and DSSI are differently applied under specific assumptions, which could affect the analytical results. The objective of this study is to observe the effect of assumptions on subspace identification with various data conditions. Firstly, an analytical simulation study is performed using a six-degree-of-freedom mass-damper-spring system which is created using MATLAB. Various conditions of excitation insert to the simulation test model, and its excitation and response are analyzed using the subspace identification method. For stochastic problems, artificial noise is contained to the excitation and followed the same steps. Through this simulation test, the effects of assumption on subspace identification are quantified.Once the effects of the assumptions are studied using the simulation model, the subspace identification method is applied to dynamic response data collected from large-scale 12-story buildings with different foundation types that are tested at Tongji University, Shanghai, China. Noise effects are verified using three different excitation types. Furthermore, using the DSSI, which has the most accurate result, the effect of different foundations on the superstructure are analyzed.
Show less - Date Issued
- 2013
- Identifier
- CFE0004703, ucf:49822
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004703
- Title
- Point Cloud Technology for Analysis of Existing Structures.
- Creator
-
Cano, Jacob, Catbas, Necati, Apostolakis, Georgios, Zaurin, Ricardo, Walters, Lori, University of Central Florida
- Abstract / Description
-
For this thesis, a study was completed on two different structures on the UCF Orlando campus through the use of both structural plans and point cloud technology. The results sought to understand the viability of point cloud technology as an accurate tool for the static and dynamic modal analysis of existing structures. For static analysis, a portion of the framing of Spectrum Stadium was rendered, modeled, analyzed and compared to a previous case study. The results emphasized how different...
Show moreFor this thesis, a study was completed on two different structures on the UCF Orlando campus through the use of both structural plans and point cloud technology. The results sought to understand the viability of point cloud technology as an accurate tool for the static and dynamic modal analysis of existing structures. For static analysis, a portion of the framing of Spectrum Stadium was rendered, modeled, analyzed and compared to a previous case study. The results emphasized how different users can render dissimilar member sizes and lengths due to human judgment on point cloud visuals. The study also found that structural plans cannot always be relied upon as the most accurate source for analysis as the new point cloud produced more accurate results than the structural plans when compared to the control model. For the pedestrian bridge, the structure was scanned, rendered and modeled for both static and dynamic modal analysis. The point cloud produced from scanning the bridge was modified twice in order to have three distinct point clouds with varying densities: fine, medium and coarse. These three cases were compared to structural plans in a static analysis. The fine point cloud produced the most accurate displacement results with an accuracy above 96%. The data sources were also compared to experimental data under dynamic modal analysis to discover how lessening the density of point clouds affect the accuracy of results. The analysis showed that point cloud technology can give you an accuracy of 88% and above for frequency while also producing MAC values exceeding 0.9 consistently. Also, changes in density were found to change the accuracy of results but the numeric values stayed within close proximity by not differing more than 10%. This thesis shines a light on the accuracy point cloud technology can ascertain and the potential it has within engineering.
Show less - Date Issued
- 2019
- Identifier
- CFE0007438, ucf:52724
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007438
- Title
- BENCHMARK STUDIES FOR STRUCTURAL HEALTH MONITORING USING ANALYTICAL AND EXPERIMENTAL MODELS.
- Creator
-
Burkett, Jason, Catbas, Necati, University of Central Florida
- Abstract / Description
-
The latest bridge inventory report for the United States indicates that 25% of the highway bridges are structurally deficient or functionally obsolete. With such a large number of bridges in this condition, safety and serviceability concerns become increasingly relevant along with the associated increase in user costs and delays. Biennial inspections have proven subjective and need to be coupled with standardized non-destructive testing methods to accurately assess a bridge's condition for...
Show moreThe latest bridge inventory report for the United States indicates that 25% of the highway bridges are structurally deficient or functionally obsolete. With such a large number of bridges in this condition, safety and serviceability concerns become increasingly relevant along with the associated increase in user costs and delays. Biennial inspections have proven subjective and need to be coupled with standardized non-destructive testing methods to accurately assess a bridge's condition for decision making purposes. Structural health monitoring is typically used to track and evaluate performance, symptoms of operational incidents, anomalies due to deterioration and damage during regular operation as well as after an extreme event. Dynamic testing and analysis are concepts widely used for health monitoring of existing structures. Successful health monitoring applications on real structures can be achieved by integrating experimental, analytical and information technologies on real life, operating structures. Real-life investigations must be backed up by laboratory benchmark studies. In addition, laboratory benchmark studies are critical for validating theory, concepts, and new technologies as well as creating a collaborative environment between different researchers. To implement structural health monitoring methods and technologies, a physical bridge model was developed in the UCF structures laboratory as part of this thesis research. In this study, the development and testing of the bridge model are discussed after a literature review of physical models. Different aspects of model development, with respect to the physical bridge model are outlined in terms of design considerations, instrumentation, finite element modeling, and simulating damage scenarios. Examples of promising damage detection methods were evaluated for common damage scenarios simulated on the numerical and physical models. These promising damage indices were applied and directly compared for the same experimental and numerical tests. To assess the simulated damage, indices such as modal flexibility and curvature were applied using mechanics and structural dynamics theory. Damage indices based on modal flexibility were observed to be promising as one of the primary indicators of damage that can be monitored over the service life of a structure. Finally, this thesis study will serve an international effort that has been initiated to explore bridge health monitoring methodologies under the auspices of International Association for Bridge Maintenance and Safety (IABMAS). The data generated in this thesis research will be made available to researchers as well as practitioners in the broad field of structural health monitoring through several national and international societies, associations and committees such as American Society of Civil Engineers (ASCE) Dynamics Committee, and the newly formed ASCE Structural Health Monitoring and Control Committee.
Show less - Date Issued
- 2005
- Identifier
- CFE0000636, ucf:46514
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000636
- Title
- STRUCTURAL HEALTH MONITORING OF COMPOSITE OVERWRAPPED PRESSURE VESSELS.
- Creator
-
Letizia, Luca, Catbas, F. Necati, University of Central Florida
- Abstract / Description
-
This work is focusing to study the structural behavior of Composite Overwrapped Pressure Vessels (COPVs). These COPVs are found in many engineering applications. In the aerospace field, they are installed onto spaceships and aid the reorientation of the spacecraft in very far and airless, therefore frictionless, orbits to save energy and fuel. The intent of this research is to analyze the difference in performance of both perfectly intact and purposely damaged tanks. Understanding both the...
Show moreThis work is focusing to study the structural behavior of Composite Overwrapped Pressure Vessels (COPVs). These COPVs are found in many engineering applications. In the aerospace field, they are installed onto spaceships and aid the reorientation of the spacecraft in very far and airless, therefore frictionless, orbits to save energy and fuel. The intent of this research is to analyze the difference in performance of both perfectly intact and purposely damaged tanks. Understanding both the source and location of a structural fault will help NASA engineers predict the performance of COPVs subject to similar conditions, which could prevent failures of important missions. The structural behavior of six tanks is investigated by means of experimental modal analysis. Knowledge of statistical signal processing methods allows to sort out and extract meaningful features from the data as to gain understanding of the performance of the structures. Structural identification is carried out using Narrow Band and Broad Band algorithms. A comparison through correlation tables and figures presents the differences in natural frequencies, mode shapes and damping ratios of all structures. A careful analysis displays the deviation of these modal parameters in the damaged tanks, highlighting the evident structural defects.
Show less - Date Issued
- 2016
- Identifier
- CFH2000069, ucf:45514
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH2000069
- Title
- INVESTIGATION OF DAMAGE DETECTION METHODOLOGIES FOR STRUCTURAL HEALTH MONITORING.
- Creator
-
Gul, Mustafa, Catbas, F. Necati, University of Central Florida
- Abstract / Description
-
Structural Health Monitoring (SHM) is employed to track and evaluate damage and deterioration during regular operation as well as after extreme events for aerospace, mechanical and civil structures. A complete SHM system incorporates performance metrics, sensing, signal processing, data analysis, transmission and management for decision-making purposes. Damage detection in the context of SHM can be successful by employing a collection of robust and practical damage detection methodologies...
Show moreStructural Health Monitoring (SHM) is employed to track and evaluate damage and deterioration during regular operation as well as after extreme events for aerospace, mechanical and civil structures. A complete SHM system incorporates performance metrics, sensing, signal processing, data analysis, transmission and management for decision-making purposes. Damage detection in the context of SHM can be successful by employing a collection of robust and practical damage detection methodologies that can be used to identify, locate and quantify damage or, in general terms, changes in observable behavior. In this study, different damage detection methods are investigated for global condition assessment of structures. First, different parametric and non-parametric approaches are re-visited and further improved for damage detection using vibration data. Modal flexibility, modal curvature and un-scaled flexibility based on the dynamic properties that are obtained using Complex Mode Indicator Function (CMIF) are used as parametric damage features. Second, statistical pattern recognition approaches using time series modeling in conjunction with outlier detection are investigated as a non-parametric damage detection technique. Third, a novel methodology using ARX models (Auto-Regressive models with eXogenous output) is proposed for damage identification. By using this new methodology, it is shown that damage can be detected, located and quantified without the need of external loading information. Next, laboratory studies are conducted on different test structures with a number of different damage scenarios for the evaluation of the techniques in a comparative fashion. Finally, application of the methodologies to real life data is also presented along with the capabilities and limitations of each approach in light of analysis results of the laboratory and real life data.
Show less - Date Issued
- 2009
- Identifier
- CFE0002830, ucf:48069
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002830
- Title
- Optimal Switch Timing for Piezoelectric-Based Semi-Active Vibration Reduction Techniques.
- Creator
-
Kelley, Christopher, Kauffman, Jeffrey, Das, Tuhin, Xu, Yunjun, University of Central Florida
- Abstract / Description
-
Semi-active vibration reduction techniques switch a piezoelectric transducer between an open circuit and a shunt circuit in a way that reduces vibration. The steady-state vibration amplitude is reduced by exploiting the change in stiffness between states, manipulating the converted electrical energy, or both. Semi-active techniques typically require four switches per vibration cycle. Control laws such as state switching and synchronized switch damping require switches to occur at every...
Show moreSemi-active vibration reduction techniques switch a piezoelectric transducer between an open circuit and a shunt circuit in a way that reduces vibration. The steady-state vibration amplitude is reduced by exploiting the change in stiffness between states, manipulating the converted electrical energy, or both. Semi-active techniques typically require four switches per vibration cycle. Control laws such as state switching and synchronized switch damping require switches to occur at every displacement extrema. Due to the complexity of analyzing a system with discrete switches, these control laws were developed based on intuition. The few analyses that attempt to determine an optimal switching law mathematically only evaluate the system at resonance. This thesis investigates the effects of switch timing on vibration reduction and the frequency dependence of the optimal switch timing control law. Regardless of the switch timing, sensing uncertainties, noise, and modeling errors can cause the switches to occur away from the designed moment. Thus, this work also quantifies the expected degradation in vibration reduction performance due to variations in the designed switch time. Experimental, numerical, and analytical solutions agree that the optimal switch timing of these semi-active techniques depends on frequency. A closed-form solution for the optimal switch timing is derived in terms of well-known, non-dimensional parameters.
Show less - Date Issued
- 2016
- Identifier
- CFE0006336, ucf:51555
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006336
- Title
- Load Estimation, Structural Identification and Human Comfort Assessment of Flexible Structures.
- Creator
-
Celik, Ozan, Catbas, Necati, Yun, Hae-Bum, Makris, Nicos, Kauffman, Jeffrey L., University of Central Florida
- Abstract / Description
-
Stadiums, pedestrian bridges, dance floors, and concert halls are distinct from other civil engineering structures due to several challenges in their design and dynamic behavior. These challenges originate from the flexible inherent nature of these structures coupled with human interactions in the form of loading. The investigations in past literature on this topic clearly state that the design of flexible structures can be improved with better load modeling strategies acquired with reliable...
Show moreStadiums, pedestrian bridges, dance floors, and concert halls are distinct from other civil engineering structures due to several challenges in their design and dynamic behavior. These challenges originate from the flexible inherent nature of these structures coupled with human interactions in the form of loading. The investigations in past literature on this topic clearly state that the design of flexible structures can be improved with better load modeling strategies acquired with reliable load quantification, a deeper understanding of structural response, generation of simple and efficient human-structure interaction models and new measurement and assessment criteria for acceptable vibration levels. In contribution to these possible improvements, this dissertation taps into three specific areas: the load quantification of lively individuals or crowds, the structural identification under non-stationary and narrowband disturbances and the measurement of excessive vibration levels for human comfort. For load quantification, a computer vision based approach capable of tracking both individual and crowd motion is used. For structural identification, a noise-assisted Multivariate Empirical Mode Decomposition (MEMD) algorithm is incorporated into the operational modal analysis. The measurement of excessive vibration levels and the assessment of human comfort are accomplished through computer vision based human and object tracking, which provides a more convenient means for measurement and computation. All the proposed methods are tested in the laboratory environment utilizing a grandstand simulator and in the field on a pedestrian bridge and on a football stadium. Findings and interpretations from the experimental results are presented. The dissertation is concluded by highlighting the critical findings and the possible future work that may be conducted.
Show less - Date Issued
- 2017
- Identifier
- CFE0006863, ucf:51752
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006863
- Title
- STRUCTURAL CONDITION ASSESSMENT OF PRESTRESSED CONCRETE TRANSIT GUIDEWAYS.
- Creator
-
Shmerling, Robert, Catbas, F. Necati, University of Central Florida
- Abstract / Description
-
Objective condition assessment is essential to make better decisions for safety and serviceability of existing civil infrastructure systems. This study explores the condition of an existing transit guideway system that has been in service for thirty-five years. The structural system is composed of six-span continuous prestressed concrete bridge segments. The overall transit system incorporates a number of continuous bridges which share common design details, geometries, and loading conditions...
Show moreObjective condition assessment is essential to make better decisions for safety and serviceability of existing civil infrastructure systems. This study explores the condition of an existing transit guideway system that has been in service for thirty-five years. The structural system is composed of six-span continuous prestressed concrete bridge segments. The overall transit system incorporates a number of continuous bridges which share common design details, geometries, and loading conditions. The original analysis is based on certain simplifying assumptions such as rigid behavior over supports and simplified tendon/concrete/steel plate interaction. The current objective is to conduct a representative study for a more accurate understanding of the structural system and its behavior. The scope of the study is to generate finite element models (FEMs) to be used in static and dynamic parameter sensitivity studies, as well load rating and reliability analysis of the structure. The FEMs are used for eigenvalue analysis and simulations. Parameter sensitivity studies consider the effect of changing critical parameters, including material properties, prestress loss, and boundary and continuity conditions, on the static and dynamic structural response. Load ratings are developed using an American Association for State Highway Transportation Officials Load and Resistance Factor Rating (AASHTO LRFR) approach. The reliability of the structural system is evaluated based on the data obtained from various finite element models. Recommendations for experimental validation of the FEM are presented. This study is expected to provide information to make better decisions for operations, maintenance and safety requirements; to be a benchmark for future studies, to establish a procedure and methodology for structural condition assessment, and to contribute to the general research body of knowledge in condition assessment and structural health monitoring.
Show less - Date Issued
- 2005
- Identifier
- CFE0000658, ucf:46520
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000658