Current Search: Nanoparticles -- Density Functional Theory (x)
View All Items
- Title
- Theoretical and Computational Studies of the electronic, Structural, Vibrational, and Thermodynamic Properties of Transition Metal Nanoparticles.
- Creator
-
Sadatshafaie, Ghazal, Rahman, Talat, Stolbov, Sergey, Ishigami, Masa, Masunov, Artem, University of Central Florida
- Abstract / Description
-
The main objective of this dissertation is to provide better understanding of the atomic configurations, electronic structure, vibrational properties, and thermodynamics of transition metal nanoparticles and evaluate the intrinsic (i.e. size and shape) and extrinsic (i.e. ligands, adsorbates, and support) effects on the aforementioned properties through a simulational approach. The presented research provides insight into better understanding of the morphological changes of the nanoparticles...
Show moreThe main objective of this dissertation is to provide better understanding of the atomic configurations, electronic structure, vibrational properties, and thermodynamics of transition metal nanoparticles and evaluate the intrinsic (i.e. size and shape) and extrinsic (i.e. ligands, adsorbates, and support) effects on the aforementioned properties through a simulational approach. The presented research provides insight into better understanding of the morphological changes of the nanoparticles that are brought about by the intrinsic factors as well as the extrinsic ones. The preference of certain ligands to stabilize specific sizes of nanoparticles is investigated. The intrinsic and extrinsic effects on the electronic structure of the nanoparticles are presented. The physical and chemical properties of the nanoparticles are evaluated through better understanding of the above effects on the experimentally observed properties as well as the applied techniques. The unexpected experimental results are tested and interpreted by deconvolution of the affecting factors. The application of Debye model to nanoparticles is tested and its shortcomings at nanoscale are discussed. Predictions which can provide insight into intelligent choice of candidates to cater to certain properties are provided. The results of this thesis can be used in the future in design and engineering of functionalized materials. We use ab initio calculations based on Density Functional Theory (DFT) to obtain information about the energetics, atomic configuration, and electronic structure of the nanoparticles. Ab initio Molecular Dynamics (MD) is used to study the evolution of the structures of the nanoparticles. To calculate vibrational frequencies, the finite displacement method is employed.
Show less - Date Issued
- 2015
- Identifier
- CFE0006385, ucf:51536
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006385
- Title
- Density-Functional Theory+Dynamical Mean-Field Theory Study of the Magnetic Properties of Transition-Metal Nanostructures.
- Creator
-
Kabir, Alamgir, Rahman, Talat, Kara, Abdelkader, Del Barco, Enrique, Kik, Pieter, University of Central Florida
- Abstract / Description
-
In this thesis, Density Functional Theory (DFT) and Dynamical Mean-Field Theory (DMFT) approaches are applied to study the magnetic properties of transition metal nanosystems of different sizes and compositions. In particular, in order to take into account dynamical electron correlation effects (time-resolved local charge interactions), we have adopted the DFT+DMFT formalism and made it suitable for application to nanostructures. Preliminary application of this DFT+DMFT approach, using...
Show moreIn this thesis, Density Functional Theory (DFT) and Dynamical Mean-Field Theory (DMFT) approaches are applied to study the magnetic properties of transition metal nanosystems of different sizes and compositions. In particular, in order to take into account dynamical electron correlation effects (time-resolved local charge interactions), we have adopted the DFT+DMFT formalism and made it suitable for application to nanostructures. Preliminary application of this DFT+DMFT approach, using available codes, to study the magnetic properties of small (2 to 5-atom) Fe and FePt clusters provide meaningful results: dynamical effects lead to a reduction of the cluster magnetic moment as compared to that obtained from DFT or DFT+U (U being the Coulomb repulsion parameter). We have subsequently developed our own nanoDFT+DMFT code and applied it to examine the magnetization of iron particles containing10-147 atoms. Our results for the cluster magnetic moments are in a good agreement with experimental data. In particular, we are able to reproduce the oscillations in magnetic moment with size as observed in the experiments. Also, DFT+DMFT does not lead to an overestimation of magnetization for the clusters in the size range of 10-27 atoms found with DFT and DFT+U. On application of the nanoDFT+DMFT approach to systems with mixed geometry (-) Fe2O3 film, which are periodic (infinitely extended), in two directions, and finite in the third. Similar to DFT+U, we find that the surface atom magnetic moments are smaller compared to the bulk. However, the absolute values of the surface atoms magnetic moments are smaller in DFT+DMFT. In parallel, we have carried out a systematic study of magnetic anisotropy in bimetallic L10 FePt nanoparticles (20-484 atoms) by using two DFT-based approaches: direct and the torque method. We find that the magnetocrystalline anisotropy (MCA) of FePt clusters is larger than that of the pure Fe and Pt ones. We explain this effect by a large hybridization of 3d Fe- and 5d Pt-atom orbitals, which lead to enhancement of the magnetic moment of the Pt atom, and hence to a larger magnetic anisotropy because of large spin-orbit coupling of Pt atoms. In addition, we find that particles whose (large) central layer consists of Pt atoms, rather than Fe, have larger MCA due to stronger hybridization effects. Such 'protected' MCA, which does not require protective cladding, can be used in modern magnetic technologies.
Show less - Date Issued
- 2015
- Identifier
- CFE0006038, ucf:50971
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006038
- Title
- STRUCTURAL, ELECTRONIC, VIBRATIONAL AND THERMODYNAMICAL PROPERTIES OF SURFACES AND NANOPARTICLES.
- Creator
-
Yildirim, Handan, Rahman, Talat S., University of Central Florida
- Abstract / Description
-
The main focus of the thesis is to have better understanding of the atomic and electronic structures, vibrational dynamics and thermodynamics of metallic surfaces and bi-metallic nanoparticles (NPs) via a multi-scale simulational approach. The research presented here involves the study of the physical and chemical properties of metallic surfaces and NPs that are useful to determine their functionality in building novel materials. The study follows the ÃÂ"bottom-upÃ&...
Show moreThe main focus of the thesis is to have better understanding of the atomic and electronic structures, vibrational dynamics and thermodynamics of metallic surfaces and bi-metallic nanoparticles (NPs) via a multi-scale simulational approach. The research presented here involves the study of the physical and chemical properties of metallic surfaces and NPs that are useful to determine their functionality in building novel materials. The study follows the ÃÂ"bottom-upÃÂ" approach for which the knowledge gathered at the scale of atoms and NPs serves as a base to build, at the macroscopic scale, materials with desired physical and chemical properties. We use a variety of theoretical and computational tools with different degrees of accuracy to study problems in different time and length scales. Interactions between the atoms are derived using both Density Functional Theory (DFT) and Embedded Atom Method (EAM), depending on the scale of the problem at hand. For some cases, both methods are used for the purpose of comparison. For revealing the local contributions to the vibrational dynamics and thermodynamics for the systems possessing site-specific environments, a local approach in real-space is used, namely Real Space GreenÃÂ's Function method (RSGF). For simulating diffusion of atoms/clusters and growth on metal surfaces, Molecular Statics (MS) and Molecular Dynamics (MD) methods are employed.
Show less - Date Issued
- 2010
- Identifier
- CFE0003064, ucf:48300
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003064
- Title
- Chemistry and dissipation at mineral surfaces in the space environment.
- Creator
-
Tucker, William, Schelling, Patrick, Britt, Daniel, Kara, Abdelkader, Coffey, Kevin, University of Central Florida
- Abstract / Description
-
The composition and morphology of mineral surfaces is known to play an important role in various phenomena relevant to planetary science. For example, the synthesis and processing of complex organics likely occurs at mineral surfaces strongly affected by the space environment. Furthermore, the dissipative and adhesive properties of dust grains may depend strongly on the chemical state of the surface including the presence of dangling bonds, adsorbates, and radicals. In this dissertation,...
Show moreThe composition and morphology of mineral surfaces is known to play an important role in various phenomena relevant to planetary science. For example, the synthesis and processing of complex organics likely occurs at mineral surfaces strongly affected by the space environment. Furthermore, the dissipative and adhesive properties of dust grains may depend strongly on the chemical state of the surface including the presence of dangling bonds, adsorbates, and radicals. In this dissertation, experimental results are first presented which demonstrate that mineral grains subjected to high temperatures in a reducing environment lead to iron nanoparticles which are strongly catalytic for the formation of complex organic species. Next, results obtained using molecular-dynamics simulations demonstrate that uncoordinated surface atoms in metallic nanoparticles result in plastic deformation, strong dissipation and adhesion during collisions. This can be contrasted with previous simulations which demonstrate significantly weaker dissipation when surface atoms are passivated. Calculations of critical sticking velocities demonstrate that simple coarse- grain models are insufficient for predicting the adhesive behavior of sub-micron sized grains. Next, results are presented describing a computational study illuminating the role of surface chemistry on adhesion and dissipation for iron nanoparticle collisions, which in the case of free radical adsorbates may also contribute to the creation of more complex species. Lastly, to further elucidate dissipation, the direct coupling of harmonic vibrational modes in the dissipation process is established. The results demonstrate broad participation of low and high-frequency modes during a collision during a timescale less than time required for particles to rebound. Hence, our results demonstrate extremely strong likelihood of adhesion during collisions. This approach provides a way to use density-functional theory calculations to directly compute dissipative couplings at mineral interfaces.
Show less - Date Issued
- 2019
- Identifier
- CFE0007545, ucf:52592
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007545