Current Search: Nonlinear Partial differential equations (x)
View All Items
- Title
- ANALYTICAL AND NUMERICAL SOLUTIONS OF DIFFERENTIALEQUATIONS ARISING IN FLUID FLOW AND HEAT TRANSFER PROBLEMS.
- Creator
-
Sweet, Erik, Vajravelu, Kuppalapalle, University of Central Florida
- Abstract / Description
-
The solutions of nonlinear ordinary or partial differential equations are important in the study of fluid flow and heat transfer. In this thesis we apply the Homotopy Analysis Method (HAM) and obtain solutions for several fluid flow and heat transfer problems. In chapter 1, a brief introduction to the history of homotopies and embeddings, along with some examples, are given. The application of homotopies and an introduction to the solutions procedure of differential equations (used in the...
Show moreThe solutions of nonlinear ordinary or partial differential equations are important in the study of fluid flow and heat transfer. In this thesis we apply the Homotopy Analysis Method (HAM) and obtain solutions for several fluid flow and heat transfer problems. In chapter 1, a brief introduction to the history of homotopies and embeddings, along with some examples, are given. The application of homotopies and an introduction to the solutions procedure of differential equations (used in the thesis) are provided. In the chapters that follow, we apply HAM to a variety of problems to highlight its use and versatility in solving a range of nonlinear problems arising in fluid flow. In chapter 2, a viscous fluid flow problem is considered to illustrate the application of HAM. In chapter 3, we explore the solution of a non-Newtonian fluid flow and provide a proof for the existence of solutions. In addition, chapter 3 sheds light on the versatility and the ease of the application of the Homotopy Analysis Method, and its capability in handling non-linearity (of rational powers). In chapter 4, we apply HAM to the case in which the fluid is flowing along stretching surfaces by taking into the effects of "slip" and suction or injection at the surface. In chapter 5 we apply HAM to a Magneto-hydrodynamic fluid (MHD) flow in two dimensions. Here we allow for the fluid to flow between two plates which are allowed to move together or apart. Also, by considering the effects of suction or injection at the surface, we investigate the effects of changes in the fluid density on the velocity field. Furthermore, the effect of the magnetic field is considered. Chapter 6 deals with MHD fluid flow over a sphere. This problem gave us the first opportunity to apply HAM to a coupled system of nonlinear differential equations. In chapter 7, we study the fluid flow between two infinite stretching disks. Here we solve a fourth order nonlinear ordinary differential equation. In chapter 8, we apply HAM to a nonlinear system of coupled partial differential equations known as the Drinfeld Sokolov equations and bring out the effects of the physical parameters on the traveling wave solutions. Finally, in chapter 9, we present prospects for future work.
Show less - Date Issued
- 2009
- Identifier
- CFE0002889, ucf:48017
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002889
- Title
- Nonlinear dispersive partial differential equations of physical relevance with applications to vortex dynamics.
- Creator
-
VanGorder, Robert, Kaup, David, Vajravelu, Kuppalapalle, Nevai, Andrew, Mohapatra, Ram, Kassab, Alain, University of Central Florida
- Abstract / Description
-
Nonlinear dispersive partial differential equations occur in a variety of areas within mathematical physics and engineering. We study several classes of such equations, including scalar complex partial differential equations, vector partial differential equations, and finally non-local integro-differential equations. For physically interesting families of these equations, we demonstrate the existence (and, when possible, stability) of specific solutions which are relevant for applications....
Show moreNonlinear dispersive partial differential equations occur in a variety of areas within mathematical physics and engineering. We study several classes of such equations, including scalar complex partial differential equations, vector partial differential equations, and finally non-local integro-differential equations. For physically interesting families of these equations, we demonstrate the existence (and, when possible, stability) of specific solutions which are relevant for applications. While multiple application areas are considered, the primary application that runs through the work would be the nonlinear dynamics of vortex filaments under a variety of physical models. For instance, we are able to determine the structure and time evolution of several physical solutions, including the planar, helical, self-similar and soliton vortex filament solutions in a quantum fluid. Properties of such solutions are determined analytically and numerically through a variety of approaches. Starting with complex scalar equations (often useful for studying two-dimensional motion), we progress through more complicated models involving vector partial differential equations and non-local equations (which permit motion in three dimensions). In many of the examples considered, the qualitative analytical results are used to verify behaviors previously observed only numerically or experimentally.
Show less - Date Issued
- 2014
- Identifier
- CFE0005272, ucf:50545
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005272
- Title
- Analytical and Numerical Investigations of the Kudryashov Generalized KdV Equation.
- Creator
-
Hilton, William, Schober, Constance, Moore, Brian, Choudhury, Sudipto, University of Central Florida
- Abstract / Description
-
This thesis concerns an analytical and numerical study of the Kudryashov Generalized Korteweg-de Vries (KG KdV) equation. Using a refined perturbation expansion of the Fermi-Pasta-Ulam (FPU) equations of motion, the KG KdV equation, which arises at sixth order, and general higher order KdV equations are derived. Special solutions of the KG KdV equation are derived using the tanh method. A pseudospectral integrator, which can handle stiff equations, is developed for the higher order KdV...
Show moreThis thesis concerns an analytical and numerical study of the Kudryashov Generalized Korteweg-de Vries (KG KdV) equation. Using a refined perturbation expansion of the Fermi-Pasta-Ulam (FPU) equations of motion, the KG KdV equation, which arises at sixth order, and general higher order KdV equations are derived. Special solutions of the KG KdV equation are derived using the tanh method. A pseudospectral integrator, which can handle stiff equations, is developed for the higher order KdV equations. The numerical experiments indicate that although the higher order equations exhibit complex dynamics, they fail to reach energy equipartition on the time scale considered.
Show less - Date Issued
- 2018
- Identifier
- CFE0007754, ucf:52395
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007754