Current Search: Observational Learning (x)
View All Items
- Title
- Learning Internal State Memory Representations from Observation.
- Creator
-
Wong, Josiah, Gonzalez, Avelino, Liu, Fei, Wu, Annie, Ontanon, Santiago, Wiegand, Rudolf, University of Central Florida
- Abstract / Description
-
Learning from Observation (LfO) is a machine learning paradigm that mimics how people learn in daily life: learning how to do something simply by watching someone else do it. LfO has been used in various applications, from video game agent creation to driving a car, but it has always been limited by the inability of an observer to know what a performing entity chooses to remember as they act in an environment. Various methods have either ignored the effects of memory or otherwise made...
Show moreLearning from Observation (LfO) is a machine learning paradigm that mimics how people learn in daily life: learning how to do something simply by watching someone else do it. LfO has been used in various applications, from video game agent creation to driving a car, but it has always been limited by the inability of an observer to know what a performing entity chooses to remember as they act in an environment. Various methods have either ignored the effects of memory or otherwise made simplistic assumptions about its structure. In this dissertation, we propose a new method, Memory Composition Learning, that captures the influence of a performer's memory in an observed behavior through the creation of an auxiliary memory feature set that explicitly models the aspects of the environment with significance for future decisions, and which can be used with a machine learning technique to provide salient information from memory. It advances the state of the art by automatically learning the internal structure of memory instead of ignoring or predefining it. This research is difficult in that memory modeling is an unsupervised learning problem that we elect to solve solely from unobtrusive observation. This research is significant for LfO in that it will allow learning techniques that otherwise could not use information from memory to use a tailored set of learned memory features that capture salient influences from memory and enable decision-making based on these influences for more effective learning performance. To validate our hypothesis, we implemented a prototype for modeling observed memory influences with our approach and applied it to simulated vacuum cleaner and lawn mower domains. Our investigation revealed that MCL was able to automatically learn memory features that describe the influences on an observed actor's internal state, and which improved learning performance of observed behaviors.
Show less - Date Issued
- 2019
- Identifier
- CFE0007879, ucf:52755
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007879
- Title
- A CONTEXTUAL APPROACH TO LEARNING COLLABORATIVE BEHAVIOR VIA OBSERVATION.
- Creator
-
Johnson, Cynthia, Gonzalez, Avelino, University of Central Florida
- Abstract / Description
-
This dissertation describes a novel technique to creating a simulated team of agents through observation. Simulated human teamwork can be used for a number of purposes, such as expert examples, automated teammates for training purposes and realistic opponents in games and training simulation. Current teamwork simulations require the team member behaviors be programmed into the simulation, often requiring a great deal of time and effort. None are able to observe a team at work and replicate...
Show moreThis dissertation describes a novel technique to creating a simulated team of agents through observation. Simulated human teamwork can be used for a number of purposes, such as expert examples, automated teammates for training purposes and realistic opponents in games and training simulation. Current teamwork simulations require the team member behaviors be programmed into the simulation, often requiring a great deal of time and effort. None are able to observe a team at work and replicate the teamwork behaviors. Machine learning techniques for learning by observation and learning by demonstration have proven successful at observing behavior of humans or other software agents and creating a behavior function for a single agent. The research described here combines current research in teamwork simulations and learning by observation to effectively train a multi-agent system in effective team behavior. The dissertation describes the background and work by others as well as a detailed description of the learning method. A prototype built to evaluate the developed approach as well as the extensive experimentation conducted is also described.
Show less - Date Issued
- 2011
- Identifier
- CFE0003602, ucf:48869
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003602
- Title
- Life Long Learning in Sparse Learning Environments.
- Creator
-
Reeder, John, Georgiopoulos, Michael, Gonzalez, Avelino, Sukthankar, Gita, Anagnostopoulos, Georgios, University of Central Florida
- Abstract / Description
-
Life long learning is a machine learning technique that deals with learning sequential tasks over time. It seeks to transfer knowledge from previous learning tasks to new learning tasks in order to increase generalization performance and learning speed. Real-time learning environments in which many agents are participating may provide learning opportunities but they are spread out in time and space outside of the geographical scope of a single learning agent. This research seeks to provide an...
Show moreLife long learning is a machine learning technique that deals with learning sequential tasks over time. It seeks to transfer knowledge from previous learning tasks to new learning tasks in order to increase generalization performance and learning speed. Real-time learning environments in which many agents are participating may provide learning opportunities but they are spread out in time and space outside of the geographical scope of a single learning agent. This research seeks to provide an algorithm and framework for life long learning among a network of agents in a sparse real-time learning environment. This work will utilize the robust knowledge representation of neural networks, and make use of both functional and representational knowledge transfer to accomplish this task. A new generative life long learning algorithm utilizing cascade correlation and reverberating pseudo-rehearsal and incorporating a method for merging divergent life long learning paths will be implemented.
Show less - Date Issued
- 2013
- Identifier
- CFE0004917, ucf:49601
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004917
- Title
- LEARNING HUMAN BEHAVIOR FROM OBSERVATION FOR GAMING APPLICATIONS.
- Creator
-
Moriarty, Christopher, Gonzalez, Avelino, University of Central Florida
- Abstract / Description
-
The gaming industry has reached a point where improving graphics has only a small effect on how much a player will enjoy a game. One focus has turned to adding more humanlike characteristics into computer game agents. Machine learning techniques are being used scarcely in games, although they do offer powerful means for creating humanlike behaviors in agents. The first person shooter (FPS), Quake 2, is an open source game that offers a multi-agent environment to create game agents (bots) in....
Show moreThe gaming industry has reached a point where improving graphics has only a small effect on how much a player will enjoy a game. One focus has turned to adding more humanlike characteristics into computer game agents. Machine learning techniques are being used scarcely in games, although they do offer powerful means for creating humanlike behaviors in agents. The first person shooter (FPS), Quake 2, is an open source game that offers a multi-agent environment to create game agents (bots) in. This work attempts to combine neural networks with a modeling paradigm known as context based reasoning (CxBR) to create a contextual game observation (CONGO) system that produces Quake 2 agents that behave as a human player trains them to act. A default level of intelligence is instilled into the bots through contextual scripts to prevent the bot from being trained to be completely useless. The results show that the humanness and entertainment value as compared to a traditional scripted bot have improved, although, CONGO bots usually ranked only slightly above a novice skill level. Overall, CONGO is a technique that offers the gaming community a mode of game play that has promising entertainment value.
Show less - Date Issued
- 2007
- Identifier
- CFE0001694, ucf:47201
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001694
- Title
- FALCONET: FORCE-FEEDBACK APPROACH FOR LEARNING FROM COACHING AND OBSERVATION USING NATURAL AND EXPERIENTIAL TRAINING.
- Creator
-
Stein, Gary, Gonzalez, Avelino, University of Central Florida
- Abstract / Description
-
Building an intelligent agent model from scratch is a difficult task. Thus, it would be preferable to have an automated process perform this task. There have been many manual and automatic techniques, however, each of these has various issues with obtaining, organizing, or making use of the data. Additionally, it can be difficult to get perfect data or, once the data is obtained, impractical to get a human subject to explain why some action was performed. Because of these problems, machine...
Show moreBuilding an intelligent agent model from scratch is a difficult task. Thus, it would be preferable to have an automated process perform this task. There have been many manual and automatic techniques, however, each of these has various issues with obtaining, organizing, or making use of the data. Additionally, it can be difficult to get perfect data or, once the data is obtained, impractical to get a human subject to explain why some action was performed. Because of these problems, machine learning from observation emerged to produce agent models based on observational data. Learning from observation uses unobtrusive and purely observable information to construct an agent that behaves similarly to the observed human. Typically, an observational system builds an agent only based on prerecorded observations. This type of system works well with respect to agent creation, but lacks the ability to be trained and updated on-line. To overcome these deficiencies, the proposed system works by adding an augmented force-feedback system of training that senses the agents intentions haptically. Furthermore, because not all possible situations can be observed or directly trained, a third stage of learning from practice is added for the agent to gain additional knowledge for a particular mission. These stages of learning mimic the natural way a human might learn a task by first watching the task being performed, then being coached to improve, and finally practicing to self improve. The hypothesis is that a system that is initially trained using human recorded data (Observational), then tuned and adjusted using force-feedback (Instructional), and then allowed to perform the task in different situations (Experiential) will be better than any individual step or combination of steps.
Show less - Date Issued
- 2009
- Identifier
- CFE0002746, ucf:48157
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002746
- Title
- EVOLVING MODELS FROM OBSERVED HUMAN PERFORMANCE.
- Creator
-
Fernlund, Hans Karl Gustav, Gonzalez, Avelino J., University of Central Florida
- Abstract / Description
-
To create a realistic environment, many simulations require simulated agents with human behavior patterns. Manually creating such agents with realistic behavior is often a tedious and time-consuming task. This dissertation describes a new approach that automatically builds human behavior models for simulated agents by observing human performance. The research described in this dissertation synergistically combines Context-Based Reasoning, a paradigm especially developed to model tactical...
Show moreTo create a realistic environment, many simulations require simulated agents with human behavior patterns. Manually creating such agents with realistic behavior is often a tedious and time-consuming task. This dissertation describes a new approach that automatically builds human behavior models for simulated agents by observing human performance. The research described in this dissertation synergistically combines Context-Based Reasoning, a paradigm especially developed to model tactical human performance within simulated agents, with Genetic Programming, a machine learning algorithm to construct the behavior knowledge in accordance to the paradigm. This synergistic combination of well-documented AI methodologies has resulted in a new algorithm that effectively and automatically builds simulated agents with human behavior. This algorithm was tested extensively with five different simulated agents created by observing the performance of five humans driving an automobile simulator. The agents show not only the ability/capability to automatically learn and generalize the behavior of the human observed, but they also capture some of the personal behavior patterns observed among the five humans. Furthermore, the agents exhibited a performance that was at least as good as agents developed manually by a knowledgeable engineer.
Show less - Date Issued
- 2004
- Identifier
- CFE0000013, ucf:46068
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000013
- Title
- FAMTILE: AN ALGORITHM FOR LEARNING HIGH-LEVEL TACTICAL BEHAVIOR FROM OBSERVATION.
- Creator
-
Stensrud, Brian, Gonzalez, Avelino, University of Central Florida
- Abstract / Description
-
This research focuses on the learning of a class of behaviors defined as high-level behaviors. High-level behaviors are defined here as behaviors that can be executed using a sequence of identifiable behaviors. Represented by low-level contexts, these behaviors are known a priori to learning and can be modeled separately by a knowledge engineer. The learning task, which is achieved by observing an expert within simulation, then becomes the identification and representation of the low-level...
Show moreThis research focuses on the learning of a class of behaviors defined as high-level behaviors. High-level behaviors are defined here as behaviors that can be executed using a sequence of identifiable behaviors. Represented by low-level contexts, these behaviors are known a priori to learning and can be modeled separately by a knowledge engineer. The learning task, which is achieved by observing an expert within simulation, then becomes the identification and representation of the low-level context sequence executed by the expert. To learn this sequence, this research proposes FAMTILE - the Fuzzy ARTMAP / Template-Based Interpretation Learning Engine. This algorithm attempts to achieve this learning task by constructing rules that govern the low-level context transitions made by the expert. By combining these rules with models for these low-level context behaviors, it is hypothesized that an intelligent model for the expert can be created that can adequately model his behavior. To evaluate FAMTILE, four testing scenarios were developed that attempt to achieve three distinct evaluation goals: assessing the learning capabilities of Fuzzy ARTMAP, evaluating the ability of FAMTILE to correctly predict expert actions and context choices given an observation, and creating a model of the expert's behavior that can perform the high-level task at a comparable level of proficiency.
Show less - Date Issued
- 2005
- Identifier
- CFE0000503, ucf:46455
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000503
- Title
- CONTEXTUALIZING OBSERVATIONAL DATA FOR MODELING HUMAN PERFORMANCE.
- Creator
-
Trinh, Viet, Gonzalez, Avelino, University of Central Florida
- Abstract / Description
-
This research focuses on the ability to contextualize observed human behaviors in efforts to automate the process of tactical human performance modeling through learning from observations. This effort to contextualize human behavior is aimed at minimizing the role and involvement of the knowledge engineers required in building intelligent Context-based Reasoning (CxBR) agents. More specifically, the goal is to automatically discover the context in which a human actor is situated when...
Show moreThis research focuses on the ability to contextualize observed human behaviors in efforts to automate the process of tactical human performance modeling through learning from observations. This effort to contextualize human behavior is aimed at minimizing the role and involvement of the knowledge engineers required in building intelligent Context-based Reasoning (CxBR) agents. More specifically, the goal is to automatically discover the context in which a human actor is situated when performing a mission to facilitate the learning of such CxBR models. This research is derived from the contextualization problem left behind in Fernlund's research on using the Genetic Context Learner (GenCL) to model CxBR agents from observed human performance [Fernlund, 2004]. To accomplish the process of context discovery, this research proposes two contextualization algorithms: Contextualized Fuzzy ART (CFA) and Context Partitioning and Clustering (COPAC). The former is a more naive approach utilizing the well known Fuzzy ART strategy while the latter is a robust algorithm developed on the principles of CxBR. Using Fernlund's original five drivers, the CFA and COPAC algorithms were tested and evaluated on their ability to effectively contextualize each driver's individualized set of behaviors into well-formed and meaningful context bases as well as generating high-fidelity agents through the integration with Fernlund's GenCL algorithm. The resultant set of agents was able to capture and generalized each driver's individualized behaviors.
Show less - Date Issued
- 2009
- Identifier
- CFE0002563, ucf:48253
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002563