Current Search: Plasma Physics (x)
View All Items
- Title
- Dynamical Invariants and the Fluid Impulse in Plasma Models.
- Creator
-
Michalak, Martin, Shivamoggi, Bhimsen, Mohapatra, Ram, Brennan, Joseph, Eastes, Richard, University of Central Florida
- Abstract / Description
-
Much progress has been made in understanding of plasmas through the use of the MHD equations and newer models such as Hall MHD and electron MHD. As with most equations of fluid behavior, these equations are nonlinear, and no general solutions can be found. The use of invariant structures allows limited predictions of fluid behavior without requiring a full solution of the underlying equations. The use of gauge transformation can allow the creation of new invariants, while differential...
Show moreMuch progress has been made in understanding of plasmas through the use of the MHD equations and newer models such as Hall MHD and electron MHD. As with most equations of fluid behavior, these equations are nonlinear, and no general solutions can be found. The use of invariant structures allows limited predictions of fluid behavior without requiring a full solution of the underlying equations. The use of gauge transformation can allow the creation of new invariants, while differential geometry offers useful tools for constructing additional invariants from those that are already known. Using these techniques, new geometric, integral and topological invariants are constructed for Hall and electron MHD models. Both compressible and incompressible models are considered, where applicable. An application of topological invariants to magnetic reconnection is provided. Finally, a particular geometric invariant, which can be interpreted as the fluid impulse density, is studied in greater detail, its nature and invariance in plasma models is demonstrated, and its behavior is predicted in particular geometries under different models.
Show less - Date Issued
- 2013
- Identifier
- CFE0005382, ucf:50442
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005382
- Title
- On Hall Magnetohydrodynamics: X-type Neutral Point and Parker Problem.
- Creator
-
Reger, Kyle, Shivamoggi, Bhimsen, Rollins, David, Eastes, Richard, University of Central Florida
- Abstract / Description
-
The framework for the Hall magnetohydrodynamic (MHD) model for plasma physics is built up from kinetic theory and used to analytically solve problems of interest in the field. The Hall MHD model describes fast magnetic reconnection processes in space and laboratory plasmas. Specifically, the magnetic reconnection process at an X-type neutral point, where current sheets form and store enormous amounts of magnetic energy which is later released as magnetic storms when the sheets break up, is...
Show moreThe framework for the Hall magnetohydrodynamic (MHD) model for plasma physics is built up from kinetic theory and used to analytically solve problems of interest in the field. The Hall MHD model describes fast magnetic reconnection processes in space and laboratory plasmas. Specifically, the magnetic reconnection process at an X-type neutral point, where current sheets form and store enormous amounts of magnetic energy which is later released as magnetic storms when the sheets break up, is investigated. The phenomena of magnetic flux pile-up driving the merging of antiparallel magnetic fields at an ion stagnation-point flow in a thin current sheet, called the Parker problem, also receives rigorous mathematical analysis.
Show less - Date Issued
- 2012
- Identifier
- CFE0004428, ucf:49345
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004428
- Title
- LASER INDUCED BREAKDOWN SPECTROSCOPY FOR DETECTION OF ORGANIC RESIDUES: IMPACT OF AMBIENT ATMOSPHERE AND LASER PARAMETERS.
- Creator
-
Brown, Christopher, Richardson, Martin, University of Central Florida
- Abstract / Description
-
Laser Induced Breakdown Spectroscopy (LIBS) is showing great potential as an atomic analytical technique. With its ability to rapidly analyze all forms of matter, with little-to-no sample preparation, LIBS has many advantages over conventional atomic emission spectroscopy techniques. With the maturation of the technologies that make LIBS possible, there has been a growing movement to implement LIBS in portable analyzers for field applications. In particular, LIBS has long been considered the...
Show moreLaser Induced Breakdown Spectroscopy (LIBS) is showing great potential as an atomic analytical technique. With its ability to rapidly analyze all forms of matter, with little-to-no sample preparation, LIBS has many advantages over conventional atomic emission spectroscopy techniques. With the maturation of the technologies that make LIBS possible, there has been a growing movement to implement LIBS in portable analyzers for field applications. In particular, LIBS has long been considered the front-runner in the drive for stand-off detection of trace deposits of explosives. Thus there is a need for a better understanding of the relevant processes that are responsible for the LIBS signature and their relationships to the different system parameters that are helping to improve LIBS as a sensing technology. This study explores the use of LIBS as a method to detect random trace amounts of specific organic materials deposited on organic or non-metallic surfaces. This requirement forces the limitation of single-shot signal analysis. This study is both experimental and theoretical, with a sizeable component addressing data analysis using principal components analysis to reduce the dimensionality of the data, and quadratic discriminant analysis to classify the data. In addition, the alternative approach of 'target factor analysis' was employed to improve detection of organic residues on organic substrates. Finally, a new method of characterizing the laser-induced plasma of organics, which should lead to improved data collection and analysis, is introduced. The comparison between modeled and experimental measurements of plasma temperatures and electronic density is discussed in order to improve the present models of low-temperature laser induced plasmas.
Show less - Date Issued
- 2011
- Identifier
- CFE0003708, ucf:48843
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003708
- Title
- INVESTIGATION OF PS-PVD AND EB-PVD THERMAL BARRIER COATINGS OVER LIFETIME USING SYNCHROTRON X-RAY DIFFRACTION.
- Creator
-
Northam, Matthew, Raghavan, Seetha, Ghosh, Ranajay, Vaidyanathan, Raj, University of Central Florida
- Abstract / Description
-
Extreme operating temperatures within the turbine section of jet engines require sophisticated methods of cooling and material protection. Thermal barrier coatings (TBCs) achieve this through a ceramic coating applied to a substrate material (nickel-based superalloy). Electron-beam physical vapor deposition (EB-PVD) is the industry standard coating used on jet engines. By tailoring the microstructure of an emerging deposition method, Plasma-spray physical vapor deposition (PS-PVD), similar...
Show moreExtreme operating temperatures within the turbine section of jet engines require sophisticated methods of cooling and material protection. Thermal barrier coatings (TBCs) achieve this through a ceramic coating applied to a substrate material (nickel-based superalloy). Electron-beam physical vapor deposition (EB-PVD) is the industry standard coating used on jet engines. By tailoring the microstructure of an emerging deposition method, Plasma-spray physical vapor deposition (PS-PVD), similar microstructures to that of EB-PVD coatings can be fabricated, allowing the benefits of strain tolerance to be obtained while improving coating deposition times. This work investigates the strain through depth of uncycled and cycled samples using these coating techniques with synchrotron X-ray diffraction (XRD). In the TGO, room temperature XRD measurements indicated samples of both deposition methods showed similar in-plane compressive stresses after 300 and 600 thermal cycles. In-situ XRD measurements indicated similar high-temperature in-plane and out-of-plane stress in the TGO and no spallation after 600 thermal cycles for both coatings. Tensile in-plane residual stresses were found in the YSZ uncycled PS-PVD samples, similar to APS coatings. PS-PVD samples showed in most cases, higher compressive residual in-plane stress at the YSZ/TGO interface. These results provide valuable insight for optimizing the PS-PVD processing parameters to obtain strain compliance similar to that of EB-PVD. Additionally, external cooling methods used for thermal management in jet engine turbines were investigated. In this work, an additively manufactured lattice structure providing transpiration cooling holes is designed and residual strains are measured within an AM transpiration cooling sample using XRD. Strains within the lattice structure were found to have greater variation than that of the AM solid wall. These results provide valuable insight into the viability of implementing an AM lattice structure in turbine blades for the use of transpiration cooling.
Show less - Date Issued
- 2019
- Identifier
- CFE0007844, ucf:52830
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007844