Current Search: Raman (x)
Pages
-
-
Title
-
HIGH GAIN / BROADBAND OXIDE GLASSES FOR NEXT GENERATION RAMAN AMPLIFIERS.
-
Creator
-
Rivero, Clara, Stegeman, George, University of Central Florida
-
Abstract / Description
-
Interest in Raman amplification has undergone a revival due to the rapidly increasing bandwidth requirements for communications transmission, both for long haul and local area networks, and recent developments in the telecom fiber industry and diode laser technology. In contrast to rare earth doped fiber amplifiers, for which the range of wavelengths is fixed and limited, Raman gain bandwidths are larger and the operating wavelength is fixed only by the pump wavelength and the bandwidth of...
Show moreInterest in Raman amplification has undergone a revival due to the rapidly increasing bandwidth requirements for communications transmission, both for long haul and local area networks, and recent developments in the telecom fiber industry and diode laser technology. In contrast to rare earth doped fiber amplifiers, for which the range of wavelengths is fixed and limited, Raman gain bandwidths are larger and the operating wavelength is fixed only by the pump wavelength and the bandwidth of the Raman active medium. In this context, glasses are the material of choice for this application due to their relatively broad spectral response, and ability of making them into optical fiber. This dissertation summarizes findings on different oxide-based glasses that have been synthesized and characterized for their potential application as Raman gain media. Two main glass families were investigated: phosphate-based glass matrices for broadband Raman gain application and TeO2-based glasses for high Raman gain amplification. A phosphate network was preferred for the broadband application since the phosphate Raman active modes can provide amplification above 1000 cm-1, whilst TeO2-based glasses were selected for the high gain application due to their enhanced nonlinearities and polarizabilities among the other oxide-based network formers. The results summarized in this dissertation show that phosphate-based glasses can provide Raman amplification bandwidths of up to 40 THz, an improvement of almost 5 times the bandwidth of SiO2. On the other hand, tellurite-based glasses appear to be promising candidates for high gain discrete Raman applications, providing peak Raman gain coefficients of up to 50 times higher than SiO2, at 1064 nm. Although, visible spontaneous Raman scattering cross-section measurement is the most frequently used tool for estimating the strength and spectral distribution of Raman gain in materials, especially glasses, there are some issues that one needs to be aware when conducting these measurements near the absorption band edge of the material. This led to the detection of an inherent frequency-dispersion in the Raman susceptibility and a resonant enhancement phenomenon when measurements were conducted near the absorption edge of the material.
Show less
-
Date Issued
-
2005
-
Identifier
-
CFE0000752, ucf:46554
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000752
-
-
Title
-
RAMAN SPECTROSCOPIC STUDY OF SINGLE RED BLOOD CELLS INFECTED BY THE MALARIA PARASITE PLASMODIUM FALCIPARUM.
-
Creator
-
Carter, William, Schulte, Alfons, University of Central Florida
-
Abstract / Description
-
Raman micro-spectroscopy provides a non-destructive probe with potential applications as a diagnostic tool for cellular disorders. This study presents micro-Raman spectra of live erythrocytes infected with a malaria parasite and investigates the potential of this probe to monitor molecular changes which occur during differentiation of the parasite inside the cell. At an excitation wavelength of 633 nm the spectral bands are dominated by hemoglobin vibrations yielding information the on...
Show moreRaman micro-spectroscopy provides a non-destructive probe with potential applications as a diagnostic tool for cellular disorders. This study presents micro-Raman spectra of live erythrocytes infected with a malaria parasite and investigates the potential of this probe to monitor molecular changes which occur during differentiation of the parasite inside the cell. At an excitation wavelength of 633 nm the spectral bands are dominated by hemoglobin vibrations yielding information the on structure and spin state of the heme moiety. It also demonstrates the novel use of silica capillaries as a viable method for studying the erythrocytes in an environment that is much closer to their native state, thus opening the possibility of maintaining the cell in vivo for long periods to study the dynamics of the parasite's growth.
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001780, ucf:47254
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001780
-
-
Title
-
PRESSURE AND TEMPERATURE RESPONSE OF A STIMULI-RESPONSIVE POLYMER PROBED WITH RAMAN MICROSCOPY.
-
Creator
-
Cariker, Coleman, Schulte, Alfons, University of Central Florida
-
Abstract / Description
-
Poly(N-isopropylacrylamide) (PNIPAM) is a thermo-responsive hydrogel; that is, it is a macromolecule which exists in a hydrated state beneath its lower critical solution temperature (LCST). Polymers such as PNIPAM undergo a phase transition in response to changes in temperature, pressure, pH, salt concentration, and the addition of co-solvents. Previously, visible-light microscopic measurements of the pressure-induced phase transition have been hindered by the lack of a pressurization...
Show morePoly(N-isopropylacrylamide) (PNIPAM) is a thermo-responsive hydrogel; that is, it is a macromolecule which exists in a hydrated state beneath its lower critical solution temperature (LCST). Polymers such as PNIPAM undergo a phase transition in response to changes in temperature, pressure, pH, salt concentration, and the addition of co-solvents. Previously, visible-light microscopic measurements of the pressure-induced phase transition have been hindered by the lack of a pressurization apparatus with the short working distance and optical transmission properties necessary for high resolution microscopy. We employ a high pressure setup which uses a fused silica micro-capillary to contain the sample. Our experiment reveals differences in the spatial evolution of the phase change across the temperature and pressure thresholds, and Raman measurements allude to conformational differences in the evolution of the phase transitions. The Raman peaks positions are in agreement with previous FTIR measurements, and due to a difference in selection rules additional vibrational bands are observed in the Raman spectra.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFH0004694, ucf:45246
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFH0004694
-
-
Title
-
Design of a hydrogen-filled hollow-core Raman fiber laser.
-
Creator
-
Qin, Yangyang, Amezcua Correa, Rodrigo, Schulzgen, Axel, Shah, Lawrence, University of Central Florida
-
Abstract / Description
-
The purpose of this study is to investigate the design of a Raman fiber laser based on a molecule hydrogen-filled hollow-core fiber with non-touching single ring of capillaries structure. O-hydrogen vibrational frequency shift of 4155 cm-1 and rotational frequency shift of 587 cm-1 were employed to generate Raman scattering from a 1064nm pump source.A thorough exploration was made to show how all Raman fiber laser components made up: gas chamber, hollow-core fibers, windows. The whole process...
Show moreThe purpose of this study is to investigate the design of a Raman fiber laser based on a molecule hydrogen-filled hollow-core fiber with non-touching single ring of capillaries structure. O-hydrogen vibrational frequency shift of 4155 cm-1 and rotational frequency shift of 587 cm-1 were employed to generate Raman scattering from a 1064nm pump source.A thorough exploration was made to show how all Raman fiber laser components made up: gas chamber, hollow-core fibers, windows. The whole process of chamber design, modification and fabrication were demonstrated. Besides, two kinds of anti-resonant hollow-core fibers were studied and tested. The transmission and loss spectrum of these fibers were measured thus it's easier to make a choice. Through the whole thesis a Raman fiber laser can be set up and tested very soon.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFE0006645, ucf:51213
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006645
-
-
Title
-
DIRECT NONLINEAR OPTICS MEASUREMENTS OF RAMAN GAIN IN BULK GLASSES AND ESTIMATES OF FIBER PERFORMANCE.
-
Creator
-
Stegeman, Robert, Delfyett, Peter, University of Central Florida
-
Abstract / Description
-
The need for more bandwidth in communications has stimulated the search for new fiberizable materials with properties superior to fused silica which is the current state-of-the-art. One of the key properties is Raman gain by which a pump beam amplifies a signal beam of longer wavelength. An apparatus capable of directly measuring the spectral dependence and absolute magnitude of the material Raman gain coefficient using nonlinear optics techniques has been built. Using radiation from a 1064...
Show moreThe need for more bandwidth in communications has stimulated the search for new fiberizable materials with properties superior to fused silica which is the current state-of-the-art. One of the key properties is Raman gain by which a pump beam amplifies a signal beam of longer wavelength. An apparatus capable of directly measuring the spectral dependence and absolute magnitude of the material Raman gain coefficient using nonlinear optics techniques has been built. Using radiation from a 1064 nm Nd:YAG laser as the pump and from a tunable Optical Parametric Generator and Amplifier as the signal, the Raman gain spectrum was measured for different families of glass samples with millimeter thickness. A number of glass families were investigated. Tellurites with added oxides of tungsten, niobium, and thallium produced the largest Raman gain coefficients of any oxide family reported to date, typically 30-50 times higher than that of fused silica. On the other hand, phosphate families were found with spectrally broad Raman gain response, 5 times broader than fused silica and flat to b3dB over the full spectral range in some compositions. Although the chalcogenides were found to photodamage easily, coefficients 50 - 80 times that of fused silica were measured. Finally, a numerical study was undertaken to predict the theoretical performance and noise properties of tellurite fibers for communications. Included in the computer modeling were linear loss; the interaction among multiple pumps and signals; forward and/or backward propagating pump beams; forward, backward and double Rayleigh scattering; noise properties of amplifiers; excess noise, etc. This led to a comparison of the optical signal-to-noise characteristics for Raman gain in a tellurite versus a silica fiber.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0000928, ucf:46739
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000928
-
-
Title
-
MICRO-RAMAN SPECTROSCOPY OF CARBONACEOUS CHONDRITE METEORITES.
-
Creator
-
Habach, Asmail, Schulte, Alfons, University of Central Florida
-
Abstract / Description
-
Analyzing the constituents of meteorites has played an important role in forming the contemporary theories of solar system evolution, planets formation, and stellar evolution. Meteorites are often a complex mixture of common rock forming silicates, such as olivines and pyroxenes, with a range of exotic species including hydrated silicates, and in some cases organic compounds. We used Micro-Raman spectroscopy to analyze the compositions of three carbonaceous chondrites: NWA852, Murchison and...
Show moreAnalyzing the constituents of meteorites has played an important role in forming the contemporary theories of solar system evolution, planets formation, and stellar evolution. Meteorites are often a complex mixture of common rock forming silicates, such as olivines and pyroxenes, with a range of exotic species including hydrated silicates, and in some cases organic compounds. We used Micro-Raman spectroscopy to analyze the compositions of three carbonaceous chondrites: NWA852, Murchison and Allende. Raman spectra were measured using laser sources with different excitation wavelengths: HeNe 633 nm and Nd:YAG 532 nm. We were able to detect 9 minerals in NWA852, 3 minerals in Murchison and 4 minerals in Allende. Some of these minerals like pyrite in NWA852 and magnetite in NWA852 and Murchison provide evidence for potential previous organic life. Other minerals like ringwoodite in Allende and lizardite in NWA852 reveal information about previous astrophysical and geological events experienced by the meteorites. The detection of graphite in the Murchison and Allende reveals information about the microstructure of these meteorites.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFH0004710, ucf:45396
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFH0004710
-
-
Title
-
A NOVEL SETUP FOR HIGH-PRESSURE RAMAN SPECTROSCOPY UNDER A MICROSCOPE.
-
Creator
-
Oakeson, Thomas, Schulte, Alfons, University of Central Florida
-
Abstract / Description
-
Functional properties of biological molecules and cells are affected by environmental parameters such as temperature and pressure. While Raman spectroscopy provides an intrinsic probe of molecular structural changes, the incorporation of a microscope enables studies of minuscule amounts of biological compounds with spatial resolution on a micron scale. We have developed a novel setup which combines a Raman microscope and a high pressure cell. A micro-capillary made out of fused silica...
Show moreFunctional properties of biological molecules and cells are affected by environmental parameters such as temperature and pressure. While Raman spectroscopy provides an intrinsic probe of molecular structural changes, the incorporation of a microscope enables studies of minuscule amounts of biological compounds with spatial resolution on a micron scale. We have developed a novel setup which combines a Raman microscope and a high pressure cell. A micro-capillary made out of fused silica simultaneously serves as the supporting body and the optical window of the pressure cell. The cell has been tested over the pressure range from 0.1 to 4 kbar. Raman spectra of less than 100 nanoliter amount of amino acid and protein solutions have been measured in the micro-capillary high pressure cell. It is also demonstrated that the setup is well suited for spectrally resolved fluorescence measurements at variable pressure.
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001683, ucf:47208
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001683
-
-
Title
-
Interplay of Molecular and Nanoscale Behaviors in Biological Soft Matter.
-
Creator
-
Ciaffone, Nicholas, Tetard, Laurene, Kang, Hyeran, Santra, Swadeshmukul, University of Central Florida
-
Abstract / Description
-
The complexity of biological soft matter at the sub-micrometer level is fundamentally correlated to the functionalities at the larger scale. Reflecting the level of heterogeneities in the properties of systems remains challenging when probing small scales, due to the mismatch between the area surveyed with the tools offering nanoscale resolution, such as atomic force microscopy (AFM), and the scale of natural variations inherent to biology. Hence, to understand the physiological and...
Show moreThe complexity of biological soft matter at the sub-micrometer level is fundamentally correlated to the functionalities at the larger scale. Reflecting the level of heterogeneities in the properties of systems remains challenging when probing small scales, due to the mismatch between the area surveyed with the tools offering nanoscale resolution, such as atomic force microscopy (AFM), and the scale of natural variations inherent to biology. Hence, to understand the physiological and mechanical alterations that occur within a single cell relative to a cell population, a multiscale approach is necessary. In this work we show that it is possible to observe molecular, chemical and physical alterations in both plant and human cells with a multiscale approach. Biophysical and biochemical traits of cell populations are studied with Fourier Transform infrared spectroscopy (FTIR) and in turn, guide higher resolution discovery with Raman spectroscopy and nanoscale infrared spectroscopy using AFM (NanoIR) to access finer details. We illustrate this with three examples of biological soft matter systems: 1) a preliminary study of cellular interactions with naturally occurring vehicles applicable to human health, 2) a qualitative examination of antibiotics and new pesticide treatments in food crop systems, and 3) a fundamental investigation of the deconstruction mechanisms of plant cells during pre-treatments in preparation for biofuel production.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007395, ucf:52058
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007395
-
-
Title
-
A Multisystem Approach for the Characterization of Bacteria for Sustainable Agriculture.
-
Creator
-
Lee, Briana, Tetard, Laurene, Kang, Hyeran, Mason, Chase, University of Central Florida
-
Abstract / Description
-
The chemical, physical, and biological properties of bacteria developing resistance have been explored in animal based bacteria while plant bacteria have been largely neglected. Thus, the ability to probe changes in stiffness, adhesion, binding interactions and molecular traits of bacteria causing plant diseases is of great interest to develop a new generation of more potent, yet sustainable, pesticides. Our study aims to investigate the physical and chemical properties of bacterial systems,...
Show moreThe chemical, physical, and biological properties of bacteria developing resistance have been explored in animal based bacteria while plant bacteria have been largely neglected. Thus, the ability to probe changes in stiffness, adhesion, binding interactions and molecular traits of bacteria causing plant diseases is of great interest to develop a new generation of more potent, yet sustainable, pesticides. Our study aims to investigate the physical and chemical properties of bacterial systems, in particular their cell walls. Building upon this fundamental understanding of the cells, we also investigate the physicochemical responses associated to multivalent nanoparticle-based bactericide treatments on bacterial systems identified as pathogens in plant diseases. Here our efforts focus on developing a protocol for the fundamental understanding of Xanthomonas perforans, a strain known for causing bacterial spot in tomatoes and causing close to 50% losses in production. To support the design and accelerate the development of pesticides and treatments against this disease, we evaluate the changes bacteria undergo in the presence of the treatment. Using a silica nanoparticle-based treatment designed with a shell containing multivalent copper and quaternary ammonium, we compare bacteria pre- and post-treatment with infrared spectroscopy, atomic force microscopy (AFM)-based techniques, and TIRF microscopy. Statistical data analysis enables the identification of attributes that can potentially serve as markers to track the bacterial responses to the treatment in the future. Finally, we will discuss the exciting implications of this work, such as potential clues for the development of more potent treatments for resistant bacteria.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007038, ucf:52005
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007038
-
-
Title
-
Enhancing CNT Composites with Raman Spectroscopy.
-
Creator
-
Freihofer, Gregory, Raghavan, Seetha, Gou, Jihua, Zhai, Lei, University of Central Florida
-
Abstract / Description
-
Carbon Nanotubes (CNTs) have been the subject of intense research for their potential to improve a variety of material properties when developed as nano-composites. This research aims to address the challenges that limit the ability to transfer the outstanding nano-scale properties of CNTs to bulk nano-composites through Raman characterization.These studies relate the vibrational modes to microstructural characterization of CNT composites including stress, interface behavior, and defects. The...
Show moreCarbon Nanotubes (CNTs) have been the subject of intense research for their potential to improve a variety of material properties when developed as nano-composites. This research aims to address the challenges that limit the ability to transfer the outstanding nano-scale properties of CNTs to bulk nano-composites through Raman characterization.These studies relate the vibrational modes to microstructural characterization of CNT composites including stress, interface behavior, and defects. The formulation of a new fitting procedure using the pseudo-Voigt function is presented and shown to minimizethe uncertainty of characteristics within the Raman G and D doublet. Methods for optimization of manufacturing processes using the Raman characterization are presentedfor selected applications in a polymer multiwalled nanotube (MWNT) composite andlaser-sintered ceramic-MWNT composite. In the first application, the evolution of theMWNT microstructure throughout a functionalization and processing of the polymer-MWNT composite was monitored using the G peak position and D/G intensity ratio.Processing parameters for laser sintering of the ceramic-MWNT composites were optimized by obtaining maximum downshift in stress sensitive G-band peak position, whilekeeping disorder sensitive D/G integrated intensity ratio to a minimum. Advanced Raman techniques, utilizing multiple wavelengths, were used to show that higher excitationenergies are less sensitive to double resonance Raman effects. This reduces their ininfluence and allows the microstructural strain in CNT composites to be probed more accurately. The use of these techniques could be applied to optimize any processing parameters in the manufacturing of CNT composites to achieve enhanced properties.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0004110, ucf:49098
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004110
-
-
Title
-
Synchrotron based infrared microspectroscopy of carbonaceous chondrites.
-
Creator
-
Yesiltas, Mehmet, Peale, Robert, Fernandez, Yan, Britt, Daniel, Reach, William, University of Central Florida
-
Abstract / Description
-
Relationships between organic molecules and inorganic minerals are investigated in five carbonaceous chondrites, Northwest Africa 852 (CR2), Tagish Lake (C2-ungroupped), Orgueil (CI1), Sutter's Mill (CM), and Murchison (CM2), with micron spatial resolution using synchrotron-based imaging micro-FTIR spectroscopy. Correlations based on absorption strength for various constituents are determined using statistical correlation analysis. Silicate band is found to be positively correlated with...
Show moreRelationships between organic molecules and inorganic minerals are investigated in five carbonaceous chondrites, Northwest Africa 852 (CR2), Tagish Lake (C2-ungroupped), Orgueil (CI1), Sutter's Mill (CM), and Murchison (CM2), with micron spatial resolution using synchrotron-based imaging micro-FTIR spectroscopy. Correlations based on absorption strength for various constituents are determined using statistical correlation analysis. Silicate band is found to be positively correlated with stretching modes of aliphatic hydrocarbons in NWA 852 and Tagish Lake. The former is highly correlated with the hydration band in all meteorites. Negative correlation is observed between water+organics and carbonate bands in all meteorites. Two dimensional infrared maps for NWA 852 and Orgueil show that carbonates are spatially separated from water+organic combination, silicates, OH, and CH distributions. Overlapping of the latter three in NWA 852 and Tagish Lake suggests a possible catalytic role of phyllosilicates in the formation of organics. Additionally, spectroscopic analyses on Sutter's Mill meteorite fragments present multiple distinct mineralogies. Spatial and spectral evidences on this regolith breccia suggest mixing of multiple parent bodies. Ratios of asymmetric CH2 and CH3 band strengths for NWA 852, Tagish Lake, and Sutter's Mill are similar to the average ratio of interplanetary dust particles and Wild 2 cometary dust particles, however significantly exceeds that of interstellar medium objects and several aqueously altered carbonaceous chondrites such as Orgueil. This suggests distinct formation regions and/or parent body processing of organics for these meteorites. Our infrared spectro-microtomography measurements on Murchison meteorite, representing the first such measurement on any kind of meteorite, comprise of three-dimensional reconstructions of specific molecular functional groups for understanding the spatial distributions of these groups.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0006061, ucf:50966
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006061
-
-
Title
-
RAMAN SPECTROSCOPY OF GLASSESWITH HIGH AND BROAD RAMAN GAIN IN THE BOSON PEAK REGION.
-
Creator
-
Guo, Yu, Schulte, Alfons, University of Central Florida
-
Abstract / Description
-
This thesis investigates Raman spectra of novel glasses and their correlation with structure for Raman gain applications. Raman gain for all-optical amplification by fibers depends significantly on the cross section for spontaneous Raman scattering allowing to compare signal strength and spectral coverage. We also investigate the relationship between glass structure and the Boson peak (enhancement of the low-frequency vibrational density of states) and report new inelastic neutron scattering...
Show moreThis thesis investigates Raman spectra of novel glasses and their correlation with structure for Raman gain applications. Raman gain for all-optical amplification by fibers depends significantly on the cross section for spontaneous Raman scattering allowing to compare signal strength and spectral coverage. We also investigate the relationship between glass structure and the Boson peak (enhancement of the low-frequency vibrational density of states) and report new inelastic neutron scattering spectra for niobium-phosphate glasses. Polarization resolved Raman spectra of glasses based on tellurite and phosphate formers have been measured from 6 1500 cm-1 using an excitation wavelength of 514 nm. The Tellurite glasses exhibit Raman Spectra at least 10 times more intense, are more spectrally uniform and possess spectral bandwidths more than a factor of two wider than fused silica. Assignments of the vibrational bands are presented and the compositional dependence of the spectra is discussed with respect to the molecular structure. Significantly high Boson peaks were found in the frequency range from 30-100 cm-1. The Raman gain curves were calculated from the polarized spontaneous Raman spectra. In particular, they show broad and flat band in the low frequency region (50-400 cm-1) suggesting that these glasses may be useful for Raman gain applications extending to very low frequencies. The inelastic neutron scattering spectra of the niobium-phosphate glasses display a pronounced low-frequency enhancement of the vibrational density of states. By averaging over the full accessible wavevector range we obtain an approximate spectral distribution of the vibrational modes. Through direct comparison with the Raman spectra we determine the Raman coupling function which shows a linear behavior near the Boson peak maximum. Possible mechanisms contributing to the low frequency Raman band such as disorder-induced irregular vibrational states are discussed.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001322, ucf:47021
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001322
-
-
Title
-
RAMAN SPECTROSCOPY OF THE SKELETON OF THE CORAL ACROPORA CERVICORNIS.
-
Creator
-
Shepard, Zachary C, Orlovskaya, Nina, University of Central Florida
-
Abstract / Description
-
Coral reefs are an important element of marine ecosystem that are critical to maintain a healthy environment. Unfortunately, in recent years coral reefs are doing poorly and many in parts of the ocean are simply dying. Therefore, study of coral's structural response to external loads could answer what will happen with their structures, while they exhibit different types of loading. Therefore, the proposition of using in-situ micro-Raman spectroscopy to study skeletons of Acropora cervicornis...
Show moreCoral reefs are an important element of marine ecosystem that are critical to maintain a healthy environment. Unfortunately, in recent years coral reefs are doing poorly and many in parts of the ocean are simply dying. Therefore, study of coral's structural response to external loads could answer what will happen with their structures, while they exhibit different types of loading. Therefore, the proposition of using in-situ micro-Raman spectroscopy to study skeletons of Acropora cervicornis was used. Coral skeleton samples I subjected to mechanical loading studied their vibrational properties by exciting the material with 532nm visible light. A uniaxial compressive load I applied using a MTS universal testing machine and then using the Raman Spectroscopy to study the vibrational response of coral skeletons. Indentations used Vickers Hardness tester and performed 2D mapping of the coral structure around the indentation. If it's expected that as a result of the proposed research the better understanding of structural stability of the Acropora Cervicornis coral skeletons will be achieved.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFH2000398, ucf:45856
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFH2000398
-
-
Title
-
STRENGTHENING POTENTIAL OF SINGLE-WALLED CARBON NANOTUBES IN PHENOLIC RESIN COMPOSITES.
-
Creator
-
Kerr, Brittany, Sohn, Yongho, University of Central Florida
-
Abstract / Description
-
Strengthening potential of single-walled carbon nanotubes (SWCNTs) in a phenolic resin composite was evaluated by characterization of purified and phenyl sulfonated SWCNTs, investigation of the load transfer capability of the purified SWCNTs, and characterization of the composites. Purified and phenyl sulfonated SWCNTs, as well as their composites, were examined by Raman spectroscopy, thermogravimetric analysis, scanning electron microscopy equipped with energy dispersive spectroscopy,...
Show moreStrengthening potential of single-walled carbon nanotubes (SWCNTs) in a phenolic resin composite was evaluated by characterization of purified and phenyl sulfonated SWCNTs, investigation of the load transfer capability of the purified SWCNTs, and characterization of the composites. Purified and phenyl sulfonated SWCNTs, as well as their composites, were examined by Raman spectroscopy, thermogravimetric analysis, scanning electron microscopy equipped with energy dispersive spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and ultra violet-visible spectrometry. Fabrication of the SWCNT/phenolic resin composite was performed by first dispersing the SWCNTs in ethylene glycol and then homogenizing the mixture with phenolic resin. The ethylene glycol was then evaporated from the mixture and the SWCNT/phenolic resin composite was cured at 200ðC for 1 hour. The dispersion of SWCNTs in the phenolic resin was reduced with higher SWCNT concentrations. Load was transferred from the phenolic resin to the purified SWCNTs. This demonstrated the potential to strengthen phenolic resin composite with SWCNT reinforcement. The load transfer efficiency in total tension (0.8%) decreased with an increase in SWCNT concentration, while in total compression (-0.8%), the load transfer efficiency remained constant. At very low strain (ñ 0.2%), the load transfer efficiency remained constant regardless of SWCNT concentration in both tension and compression. Characterization of the phenyl sulfonated SWCNTs indicated that calcium was introduced as a contaminant that interfered with functionalization of the SWCNTs. The use of contaminated phenyl sulfonated SWCNTs resulted in macroscopic inhomogeneity within the composite.
Show less
-
Date Issued
-
2010
-
Identifier
-
CFE0003070, ucf:48317
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003070
-
-
Title
-
Nondestructive Analysis of Advanced Aerospace Materials via Spectroscopy and Synchrotron Radiation.
-
Creator
-
Manero, Albert, Raghavan, Seetha, Kauffman, Jeffrey, Gou, Jihua, University of Central Florida
-
Abstract / Description
-
Advanced aerospace materials require extensive testing and characterization to anticipate and ensure their integrity under hostile environments. Characterization methods utilizing synchrotron X-Ray diffraction and spectroscopy can decrease the time required to determine an emerging material's readiness for application through intrinsic information on the material response and failure mechanisms. In this study, thermal barrier coating samples applicable to turbine blades of jet engines were...
Show moreAdvanced aerospace materials require extensive testing and characterization to anticipate and ensure their integrity under hostile environments. Characterization methods utilizing synchrotron X-Ray diffraction and spectroscopy can decrease the time required to determine an emerging material's readiness for application through intrinsic information on the material response and failure mechanisms. In this study, thermal barrier coating samples applicable to turbine blades of jet engines were studied using Raman and Photoluminescence spectroscopy as well as Synchrotron X-ray diffraction while Kevlar based fiber composites applicable to ballistic resistant armor were studied using Raman spectroscopy to investigate the mechanical state and corresponding damage and failure mechanisms. Piezospectroscopic studies on the stress state of the thermally grown oxide (TGO) within the thermal barrier coatings, on a hollow cylindrical specimen, provided results that indicate variations within the TGO. Comparison of measured photo-luminescence spectra of the specimen before and after long duration thermal aging showcases the development of the system and the initiation of micro-damage. Raman spectroscopy performed on Kevlar ballistic composites with nano-scale additives, presented insight into the additives' role in load transfer and damage propagation through a comparison of the shift in optical spectra to that of the pristine fibers. The results presented herein utilize changes in the measured emission from these non-destructive testing techniques to link the phenomena with material response. Techniques to optimize imaging and spectral collection are addressed as well. The findings will advance the use of the techniques in the development of aerospace materials, providing a more complete understanding of land and aircraft turbine blade coatings, and fiber composite response to complex loading.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005657, ucf:50195
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005657
-
-
Title
-
Advanced Nanoscale Characterization of Plants and Plant-derived Materials for Sustainable Agriculture and Renewable Energy.
-
Creator
-
Soliman, Mikhael, Tetard, Laurene, Vaidyanathan, Raj, Kang, Hyeran, Santra, Swadeshmukul, Zhai, Lei, Chumbimuni Torres, Karin, University of Central Florida
-
Abstract / Description
-
The need for nanoscale, non-invasive functional characterization has become more significant with advances in nano-biotechnology and related fields. Exploring the ultrastructure of plant cell walls and plant-derived materials is necessary to access a more profound understanding of the molecular interactions in the systems, in view of a rational design for sustainable applications. This, in turn, relates to the pressing requirements for food, energy and water sustainability experienced...
Show moreThe need for nanoscale, non-invasive functional characterization has become more significant with advances in nano-biotechnology and related fields. Exploring the ultrastructure of plant cell walls and plant-derived materials is necessary to access a more profound understanding of the molecular interactions in the systems, in view of a rational design for sustainable applications. This, in turn, relates to the pressing requirements for food, energy and water sustainability experienced worldwide.Here we will present our advanced characterization approach to study the effects of external stresses on plants, and resulting opportunities for biomass valorization with an impact on the food-energy-water nexus.First, the adaption of plants to the pressure imposed by gravity in poplar reaction wood will be discussed. We will show that a multiscale characterization approach is necessary to reach a better understanding of the chemical and physical properties of cell walls across a transverse section of poplar stem. Our Raman spectroscopy and statistical analysis reveals intricate variations in the cellulose and lignin properties. Further, we will present evidence that advanced atomic force microscopy can reveal nanoscale variations within the individual cell wall layers, not attainable with common analytical tools. Next, chemical stresses, in particular the effect of Zinc-based pesticides on citrus plants, will be considered. We will show how multiscale characterization can support the development of new disease management methods for systemic bacterial diseases, such as citrus greening, of great importance for sustainable agriculture. In particular, we will focus on the study of new formulations, their uptake and translocation in the plants following different application methods. Lastly, we will consider how plant reactions to mechanical and chemical stresses can be controlled to engineer biomass for valorization applications. We will present our characterization of two examples: the production of carbon films derived from woody lignocellulosic biomass and the development of nanoscale growth promoters for food crop. A perspective of the work and discussion of the broader impact will conclude the presentation.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007415, ucf:52717
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007415
-
-
Title
-
NEW ORGANIC/INORGANIC HYBRID SOL-GEL NANOCOMPOSITE MATERIALS FOR RAMAN GAIN IN FIBER OPTICS.
-
Creator
-
Andrasik, Stephen James, Belfield, Kevin D., University of Central Florida
-
Abstract / Description
-
ABSTRACTThe recent increased availability of additional wavelengths in the telecommunications window of about 1300-1600 nm has generated an interest in new optical materials and devices that can operate outside the normally used regions of 840 nm, 1310 nm, and 1550 nm. Specifically, methods to amplify fiber optical data transmission in the regions where there is limited or no existing methods to achieve amplification is of interest in the chemistry and photonic communities. Raman gain is one...
Show moreABSTRACTThe recent increased availability of additional wavelengths in the telecommunications window of about 1300-1600 nm has generated an interest in new optical materials and devices that can operate outside the normally used regions of 840 nm, 1310 nm, and 1550 nm. Specifically, methods to amplify fiber optical data transmission in the regions where there is limited or no existing methods to achieve amplification is of interest in the chemistry and photonic communities. Raman gain is one method that has been proposed to passively amplify optical data transmission through a distributed process. Amplification is obtained through a nonlinear light scattering process where an optical wave is amplified at the expense of a higher frequency pump wave. Multiple wavelengths can be evenly amplified simultaneously in a desired region by specific selection of one or more pump wavelengths. Herein, the synthesis and characterization of new hybrid inorganic/organic sol-gels and monomers capable of producing broad wavelength Raman scattering over a spectral range of 1200-1670 nm are presented. The synthetic methodology developed facilitates the systematic approach to produce sol-gel derivatives with functional groups known to be strongly Raman scattering. Additionally, a method to synthesize and characterize a large number of different compounds using a combinatorial approach was demonstrated. Thio based derivatives of sulfonyldiphenol, isopropylidenediphenol, and triallyloxy triazine were synthesized in addition to thio derivatives of poly(hydroxystyrene). Micro-Raman spectra of the hybrid sol-gels, thio-based derivatives, and IR spectra of select sol-gel monomers were obtained.
Show less
-
Date Issued
-
2004
-
Identifier
-
CFE0000028, ucf:46094
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000028
-
-
Title
-
OPTIMAL SINTERING TEMPERATURE OF CERIA-DOPED SCANDIA STABILIZED ZIRCONIA FOR USE IN SOLID OXIDE FUEL CELLS.
-
Creator
-
Assuncao, Amanda K, Orlovskaya, Nina, University of Central Florida
-
Abstract / Description
-
Carbon emissions are known to cause decay of the Ozone layer in addition to creating pollutant, poisonous air. This has become a growing concern among scientists and engineers across the globe; if this issue is not addressed, it is likely that the Earth will suffer catastrophic consequences. One of the main culprits of these harmful carbon emissions is fuel combustion. Between vehicles, power plants, airplanes, and ships, the world consumes an extraordinary amount of oil and fuel which all...
Show moreCarbon emissions are known to cause decay of the Ozone layer in addition to creating pollutant, poisonous air. This has become a growing concern among scientists and engineers across the globe; if this issue is not addressed, it is likely that the Earth will suffer catastrophic consequences. One of the main culprits of these harmful carbon emissions is fuel combustion. Between vehicles, power plants, airplanes, and ships, the world consumes an extraordinary amount of oil and fuel which all contributes to the emissions problem. Therefore, it is crucial to develop alternative energy sources that minimize the impact on the environment. One such technology that is currently being researched, is the Solid Oxide Fuel Cell (SOFC). This is a relatively simple device that converts chemical energy into electrical energy with no harmful emissions. For these devices to work properly, they require an electrolyte material that has high ionic conductivity with good phase stability at a variety of temperatures. The research presented in this study will concentrate intensively on just one of the many candidates for SOFC electrolytes. 1 mol% CeO2 - 10 mol% Sc2O3 - 89 mol% ZrO2 manufactured by Treibacher Industries was analyzed to better understand its sintering properties, phase stability, and molecular structure. Sintering was performed at temperatures ranging from 900oC to 1600oC and the shrinkage, density and porosity were examined for each temperature. Raman Spectroscopy and X-Ray Powder Diffraction were also conducted for comparison with other known compositions to see if the powder undergoes any phase transitions or instability.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFH2000408, ucf:45894
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFH2000408
-
-
Title
-
Analysis of residual stress and damage mechanisms of thermal barrier coatings deposited via PS-PVD and EB-PVD.
-
Creator
-
Rossmann, Linda, Raghavan, Seetha, Sohn, Yongho, Vaidyanathan, Raj, Ghosh, Ranajay, University of Central Florida
-
Abstract / Description
-
Thermal barrier coatings (TBCs) are critical to gas turbine engines, as they protect the components in the hot section from the extreme temperatures of operation. The current industry standard method of applying TBCs for turbine blades in jet engines is electron-beam physical vapor deposition (EB-PVD), which results in a columnar structure that is valued for its high degree of strain tolerance. An emerging deposition method is plasma-spray physical vapor deposition (PS-PVD), capable of...
Show moreThermal barrier coatings (TBCs) are critical to gas turbine engines, as they protect the components in the hot section from the extreme temperatures of operation. The current industry standard method of applying TBCs for turbine blades in jet engines is electron-beam physical vapor deposition (EB-PVD), which results in a columnar structure that is valued for its high degree of strain tolerance. An emerging deposition method is plasma-spray physical vapor deposition (PS-PVD), capable of producing a variety of customizable microstructures as well as non-line-of-sight deposition, which allows more complex geometries to be coated, or even multiple parts at once. The pseudo-columnar microstructure that can be produced with PS-PVD is a possible alternative to EB-PVD. However, before PS-PVD can be used to its full potential, its mechanical properties and behavior must be understood. This work contributes to this understanding by characterizing PS-PVD TBCs that have been thermally cycled to simulate multiple lifetimes (0, 300, and 600 thermal cycles). Residual stress in the thermally grown oxide (TGO) layer is characterized by photoluminescence piezospectroscopy as TGO residual stress is correlated with the lifetime of the coating. Residual stress in the top coat is characterized by Raman spectroscopy, because this stress drives cracking in the top coat that can lead to failure. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) are performed to observe microstructural and phase evolution to provide context and possible explanations for the stress results. In addition, EB-PVD samples of the same thermal cycling history are characterized in the same way so that PS-PVD can be benchmarked against the industry standard. The compressive residual stress in the TGO in both coatings was relieved with thermal cycling due to the TGO lengthening as well as microcracking. The PS-PVD samples had slightly lower TGO stress than the EB-PVD, which is attributed to the greater extent of cracking within the TGO, whereas cracking in the EB-PVD samples was at the TGO/topcoat interface. The PS-PVD cycled samples had significant cracking within the topcoat near the TGO due to both greater porosity than EB-PVD samples and regions of unmelted particles that provide little resistance to cracking. The greater convolution of the TGO in the PS-PVD samples results in greater out-of-plane tensile stresses that cause crack initiation, as well as diverts cracks away from the difficult-to-follow interface. The TGO stress results agree with existing literature and extend the thermal cycling beyond what has previously been reported for PS-PVD coatings, revealing a trend of stress relief and stress values similar to that of EB-PVD coatings in this study and in the literature. Residual stress in the topcoat for both coating types became increasingly compressive with thermal cycling, indicating loss of strain tolerance by sintering. The trend of the YSZ stress for both coating types to become more compressive with cycling and with depth agrees with the literature, and the thermal cycling is longer than has been previously reported for PS-PVD. The two coating types had quite different microstructures and crack modes as well as different as-deposited residual stresses, but after thermal cycling had similar stresses in both the TGO and top coat. No samples experienced spallation. These results indicate that, while PS-PVD coatings have different properties and behavior from EB-PVD coatings, they had comparable levels of damage to EB-PVD coatings of the same lifetime and are a viable alternative to EB-PVD. Further tuning of the processing parameters may result in PS-PVD coatings with even more similar behavior to EB-PVD coatings.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007717, ucf:52429
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007717
-
-
Title
-
Development of Polymer Derived SiAlCN Ceramic and Its Applications for High-Temperature Sensors.
-
Creator
-
Shao, Gang, An, Linan, Fang, Jiyu, Xu, Chengying, Chow, Lee, Deng, Weiwei, University of Central Florida
-
Abstract / Description
-
Polymer-derived ceramic (PDC) is the name for a class of materials synthesized by thermal decomposition of polymeric precursors which excellent thermomechanical properties, such as high thermal stability, high oxidation/corrosion resistance and high temperature multifunctionalities. Direct polymer-to-ceramic processing routes of PDCs allow easier fabrication into various components/devices with complex shapes/structures. Due to these unique properties, PDCs are considered as promising...
Show morePolymer-derived ceramic (PDC) is the name for a class of materials synthesized by thermal decomposition of polymeric precursors which excellent thermomechanical properties, such as high thermal stability, high oxidation/corrosion resistance and high temperature multifunctionalities. Direct polymer-to-ceramic processing routes of PDCs allow easier fabrication into various components/devices with complex shapes/structures. Due to these unique properties, PDCs are considered as promising candidates for making high-temperature sensors for harsh environment applications, including high temperatures, high stress, corrosive species and/or radiation. The SiAlCN ceramics were synthesized using the liquid precursor of polysilazane (HTT1800) and aluminum-sec-tri-butoxide (ASB) as starting materials and dicumyl peroxide (DP) as thermal initiator. The as-received SiAlCN ceramics have very good thermal-mechanical properties and no detectable weight loss and large scale crystallization. Solid-state NMR indicates that SiAlCN ceramics have the SiN4, SiO4, SiCN3, and AlN5/AlN6 units. Raman spectra reveals that SiAlCN ceramics contain (")free carbon(") phase with two specific Raman peaks of (")D(") band and (")G(") band at 1350 cm-1 and 1600 cm-1, respectively. The (")free carbon(") becomes more and more ordered with increasing the pyrolysis temperature. EPR results show that the defects in SiAlCN ceramics are carbon-related with a g-factor of 2.0016(&)#177;0.0006. Meanwhile, the defect concentration decreases with increasing sintered temperature, which is consistent with the results obtained from Raman spectra.Electric and dielectric properties of SiAlCN ceramics were characterized. The D.C. conductivity of SiAlCN ceramics increases with increasing sintered temperature and the activation energy is about 5.1 eV which higher than that of SiCN ceramics due to the presence of oxygen. The temperature dependent conductivity indicates that the conducting mechanism is a semiconducting band-gap model and follows the Arrhenius equation with two different sections of activation energy of 0.57 eVand 0.23 eV, respectively. The temperature dependent conductivity makes SiAlCN ceramics suit able for high temperature sensor applications. The dielectric properties were carried out by the Agilent 4298A LRC meter. The results reveal an increase in both dielectric constant and loss with increasing temperature (both pyrolysis and tested). Dielectric loss is dominated by the increasing of conductivity of SiAlCN ceramics at high sintered temperatures.SiAlCN ceramic sensors were fabricated by using the micro-machining method. High temperature wire bonding issues were solved by the integrity embedded method (IEM). It's found that the micro-machining method is a promising and cost-effective way to fabricate PDC high temperature sensors. Moreover IEM is a good method to solve the high temperature wire bonding problems with clear bonding interface between the SiAlCN sensor head and Pt wires. The Wheatstone bridge circuit is well designed by considering the resistance relationship between the matching resistor and the SiAlCN sensor resistor. It was found that the maximum sensitivity can be achieved when the resistance of matching resistor is equal to that of the SiAlCN sensor. The as-received SiAlCN ceramic sensor was tested up to 600 degree C with the relative output voltage changing from -3.932 V to 1.153 V. The results indicate that the relationship between output voltage and test temperature is nonlinear. The tested sensor output voltage agrees well with the simulated results. The durability test was carried out at 510 degree C for more than two hours. It was found that the output voltage remained constant for the first 30 min and then decreased gradually afterward by 0.02, 0.04 and 0.07 V for 1, 1.5 and 2 hours.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0004937, ucf:49602
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004937
Pages