Current Search: Real-time Rendering (x)
View All Items
- Title
- IMAGE-SPACE APPROACH TO REAL-TIME REALISTIC RENDERING.
- Creator
-
Shah, Musawir, Pattanaik, Sumanta, University of Central Florida
- Abstract / Description
-
One of the main goals of computer graphics is the fast synthesis of photorealistic image of virtual 3D scenes. The work presented in this thesis addresses this goal of speed and realism. In real-time realistic rendering, we encounter certain problems that are difficult to solve in the traditional 3-dimensional geometric space. We show that using an image-space approach can provide effective solutions to these problems. Unlike geometric space algorithms that operate on 3D primitives such as...
Show moreOne of the main goals of computer graphics is the fast synthesis of photorealistic image of virtual 3D scenes. The work presented in this thesis addresses this goal of speed and realism. In real-time realistic rendering, we encounter certain problems that are difficult to solve in the traditional 3-dimensional geometric space. We show that using an image-space approach can provide effective solutions to these problems. Unlike geometric space algorithms that operate on 3D primitives such as points, edges, and polygons, image-space algorithms operate on 2D snapshot images of the 3D geometric data. Operating in image-space effectively decouples the geometric complexity of the 3D data from the run-time of the rendering algorithm. Other important advantages of image-space algorithms include ease of implementation on modern graphics hardware, and fast computation of approximate solutions to certain lighting calculations. We have applied the image-space approach and developed algorithms for three prominent problems in real-time realistic rendering, namely, representing and lighting large 3D scenes in the context of grass rendering, rendering caustics, which is a complex indirect illumination effect, and subsurface scattering for rendering of translucent objects.
Show less - Date Issued
- 2007
- Identifier
- CFE0001967, ucf:47462
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001967
- Title
- APPEARANCE-DRIVEN MATERIAL DESIGN.
- Creator
-
Colbert, Mark, Hughes, Charles, University of Central Florida
- Abstract / Description
-
In the computer graphics production environment, artists often must tweak specific lighting and material parameters to match a mind's eye vision of the appearance of a 3D scene. However, the interaction between a material and a lighting environment is often too complex to cognitively predict without visualization. Therefore, artists operate in a design cycle, where they tweak the parameters, wait for a visualization, and repeat, seeking to obtain a desired look. We propose the use of...
Show moreIn the computer graphics production environment, artists often must tweak specific lighting and material parameters to match a mind's eye vision of the appearance of a 3D scene. However, the interaction between a material and a lighting environment is often too complex to cognitively predict without visualization. Therefore, artists operate in a design cycle, where they tweak the parameters, wait for a visualization, and repeat, seeking to obtain a desired look. We propose the use of appearance-driven material design. Here, artists directly design the appearance of reflected light for a specific view, surface point, and time. In this thesis, we discuss several methods for appearance-driven design with homogeneous materials, spatially-varying materials, and appearance-matching materials, where each uses a unique modeling and optimization paradigm. Moreover, we present a novel treatment of the illumination integral using sampling theory that can utilize the computational power of the graphics processing unit (GPU) to provide real-time visualization of the appearance of various materials illuminated by complex environment lighting. As a system, the modeling, optimization and rendering steps all operate on arbitrary geometry and in detailed lighting environments, while still providing instant feedback to the designer. Thus, our approach allows materials to play an active role in the process of set design and story-telling, a capability that was, until now, difficult to achieve due to the unavailability of interactive tools appropriate for artists.
Show less - Date Issued
- 2008
- Identifier
- CFE0002217, ucf:47913
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002217
- Title
- REAL-TIME REALISTIC RENDERING OF NATURE SCENES WITH DYNAMIC LIGHTING.
- Creator
-
Boulanger, Kevin, Pattanaik, Sumanta, University of Central Florida
- Abstract / Description
-
Rendering of natural scenes has interested the scientific community for a long time due to its numerous applications. The targeted goal is to create images that are similar to what a viewer can see in real life with his/her eyes. The main obstacle is complexity: nature scenes from real life contain a huge number of small details that are hard to model, take a lot of time to render and require a huge amount of memory unavailable in current computers. This complexity mainly comes from geometry...
Show moreRendering of natural scenes has interested the scientific community for a long time due to its numerous applications. The targeted goal is to create images that are similar to what a viewer can see in real life with his/her eyes. The main obstacle is complexity: nature scenes from real life contain a huge number of small details that are hard to model, take a lot of time to render and require a huge amount of memory unavailable in current computers. This complexity mainly comes from geometry and lighting. The goal of our research is to overcome this complexity and to achieve real-time rendering of nature scenes while providing visually convincing dynamic global illumination. Our work focuses on grass and trees as they are commonly visible in everyday life. We handle geometry and lighting complexities for grass to render millions of grass blades interactively with dynamic lighting. As for lighting complexity, we address real-time rendering of trees by proposing a lighting model that handles indirect lighting. Our work makes extensive use of the current generation of Graphics Processing Units (GPUs) to meet the real-time requirement and to leave the CPU free to carry out other tasks.
Show less - Date Issued
- 2008
- Identifier
- CFE0002262, ucf:47868
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002262
- Title
- REAL-TIME REALISTIC RENDERING AND HIGH DYNAMIC RANGE IMAGE DISPLAY AND COMPRESSION.
- Creator
-
Xu, Ruifeng, Pattanaik, Sumanta, University of Central Florida
- Abstract / Description
-
This dissertation focuses on the many issues that arise from the visual rendering problem. Of primary consideration is light transport simulation, which is known to be computationally expensive. Monte Carlo methods represent a simple and general class of algorithms often used for light transport computation. Unfortunately, the images resulting from Monte Carlo approaches generally suffer from visually unacceptable noise artifacts. The result of any light transport simulation is, by its very...
Show moreThis dissertation focuses on the many issues that arise from the visual rendering problem. Of primary consideration is light transport simulation, which is known to be computationally expensive. Monte Carlo methods represent a simple and general class of algorithms often used for light transport computation. Unfortunately, the images resulting from Monte Carlo approaches generally suffer from visually unacceptable noise artifacts. The result of any light transport simulation is, by its very nature, an image of high dynamic range (HDR). This leads to the issues of the display of such images on conventional low dynamic range devices and the development of data compression algorithms to store and recover the corresponding large amounts of detail found in HDR images. This dissertation presents our contributions relevant to these issues. Our contributions to high dynamic range image processing include tone mapping and data compression algorithms. This research proposes and shows the efficacy of a novel level set based tone mapping method that preserves visual details in the display of high dynamic range images on low dynamic range display devices. The level set method is used to extract the high frequency information from HDR images. The details are then added to the range compressed low frequency information to reconstruct a visually accurate low dynamic range version of the image. Additional challenges associated with high dynamic range images include the requirements to reduce excessively large amounts of storage and transmission time. To alleviate these problems, this research presents two methods for efficient high dynamic range image data compression. One is based on the classical JPEG compression. It first converts the raw image into RGBE representation, and then sends the color base and common exponent to classical discrete cosine transform based compression and lossless compression, respectively. The other is based on the wavelet transformation. It first transforms the raw image data into the logarithmic domain, then quantizes the logarithmic data into the integer domain, and finally applies the wavelet based JPEG2000 encoder for entropy compression and bit stream truncation to meet the desired bit rate requirement. We believe that these and similar such contributions will make a wide application of high dynamic range images possible. The contributions to light transport simulation include Monte Carlo noise reduction, dynamic object rendering and complex scene rendering. Monte Carlo noise is an inescapable artifact in synthetic images rendered using stochastic algorithm. This dissertation proposes two noise reduction algorithms to obtain high quality synthetic images. The first one models the distribution of noise in the wavelet domain using a Laplacian function, and then suppresses the noise using a Bayesian method. The other extends the bilateral filtering method to reduce all types of Monte Carlo noise in a unified way. All our methods reduce Monte Carlo noise effectively. Rendering of dynamic objects adds more dimension to the expensive light transport simulation issue. This dissertation presents a pre-computation based method. It pre-computes the surface radiance for each basis lighting and animation key frame, and then renders the objects by synthesizing the pre-computed data in real-time. Realistic rendering of complex scenes is computationally expensive. This research proposes a novel 3D space subdivision method, which leads to a new rendering framework. The light is first distributed to each local region to form local light fields, which are then used to illuminate the local scenes. The method allows us to render complex scenes at interactive frame rates. Rendering has important applications in mixed reality. Consistent lighting and shadows between real scenes and virtual scenes are important features of visual integration. The dissertation proposes to render the virtual objects by irradiance rendering using live captured environmental lighting. This research also introduces a virtual shadow generation method that computes shadows cast by virtual objects to the real background. We finally conclude the dissertation by discussing a number of future directions for rendering research, and presenting our proposed approaches.
Show less - Date Issued
- 2005
- Identifier
- CFE0000730, ucf:46615
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000730