Current Search: Runoff (x)
-
-
Title
-
Optimization of storm water management practices and processes.
-
Creator
-
Calabrese, Mark Michael, Wanielista, Martin P., Engineering
-
Abstract / Description
-
University of Central Florida College of Engineering Thesis; In recent years, stormwater has been found to be a major source of pollution to receiving waters. Major research efforts have been directed in this area, primarily as a result of the Federal Water Pollution Control Act and Public law 92-500, the 1972 Amendments to the act. Yet, a need remains for more data in the field of stormwater management. Such needs include cost-performance data and planning methodologies to optimally select...
Show moreUniversity of Central Florida College of Engineering Thesis; In recent years, stormwater has been found to be a major source of pollution to receiving waters. Major research efforts have been directed in this area, primarily as a result of the Federal Water Pollution Control Act and Public law 92-500, the 1972 Amendments to the act. Yet, a need remains for more data in the field of stormwater management. Such needs include cost-performance data and planning methodologies to optimally select best management practices (BMP's). The research culminating in this report addresses these needs. A computer program, "MANAGE", has been written to generate cost/efficiency curves, and uses these curves to optimally select a combination of management practices. The program was written in FORTRAN language and was run on the IBM 360/370 computer system. It can analyze up to 3 management practices per subwatershed and up to 20 subwatersheds in a given watershed. The optimization routine of the program utilizes a piece-wise linear approximation method in its analysis.
Show less
-
Date Issued
-
1979
-
Identifier
-
CFR0003496, ucf:53020
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFR0003496
-
-
Title
-
Infiltration in Stormwater Detention/ Percolation Basin Design.
-
Creator
-
Beaver, Robert D., Hartman, J Paul, Engineering
-
Abstract / Description
-
Florida Technological University College of Engineering Thesis; Investigations of soil parameters, infiltration testing, and storm observations are used to determine the infiltration characteristics for three Central Florida stormwater holding basins. Basic soil parameters are investigated and a value for available soil water storage is computed from these data. In-situ permeability and infiltration tests are used to obtain field permeability and infiltration rates. Infiltration test results...
Show moreFlorida Technological University College of Engineering Thesis; Investigations of soil parameters, infiltration testing, and storm observations are used to determine the infiltration characteristics for three Central Florida stormwater holding basins. Basic soil parameters are investigated and a value for available soil water storage is computed from these data. In-situ permeability and infiltration tests are used to obtain field permeability and infiltration rates. Infiltration test results may be applied to infiltration theory. Data from infiltration tests may be verified using available soil water storage computed from soil parameters. The effect of soil cover conditions is noted and investigated using the drum infiltrometer. Storm observations are used to confirm infiltration models. Infrequency of rainfall activity limited the number and reliability of observations. The effects of precipitation frequency and input intensity to the pond also noted in storm observations. A design procedure incorporating infiltration in stormwater retention basins is presented. This design procedure is based on infiltration theory and observed pond operation.
Show less
-
Date Issued
-
1977
-
Identifier
-
CFR0008151, ucf:52946
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFR0008151
-
-
Title
-
ATMOSPHERIC MERCURY DEPOSITION IN AN URBAN ENVIRONMENT.
-
Creator
-
Fulkerson, Mark, Nnadi, Fidelia, University of Central Florida
-
Abstract / Description
-
Atmospheric mercury deposition, known to be a major source of mercury to aquatic and terrestrial environments, was studied at an urban site in Orlando, FL. Precipitation sampling was conducted from September 2003 to May 2006 at a Mercury Deposition Network site located on the University of Central Florida campus. Weekly rainfall and mercury wet deposition data were gathered from this site, which provided the framework of data for this study. Historical mercury wet deposition data from several...
Show moreAtmospheric mercury deposition, known to be a major source of mercury to aquatic and terrestrial environments, was studied at an urban site in Orlando, FL. Precipitation sampling was conducted from September 2003 to May 2006 at a Mercury Deposition Network site located on the University of Central Florida campus. Weekly rainfall and mercury wet deposition data were gathered from this site, which provided the framework of data for this study. Historical mercury wet deposition data from several sites in Florida were used to develop a regression model to predict mercury deposition at any location in Florida. Stormwater runoff from a 2-acre impervious surface at this study area was monitored during the spring and summer of 2005. Runoff water quality was analyzed to characterize mercury dry deposition. Atmospheric monitoring was also conducted during this period to study the interaction of atmospheric constituents on wet and dry deposition patterns. Spatial and seasonal trends for the entire state suggest 80% of Florida's rainfall and mercury deposition occur during the wet season. A strong linear correlation was established between rainfall depth and mercury deposition (R2 = 0.8). Prediction equations for the entire state, for both wet and dry seasons, were strongly correlated with measured data. The results of two unique methods to quantify dry deposition were similar at this site during this study period. Runoff monitored at this site contained significant levels of mercury, primarily in particulate form (58%). The vast majority of particulate mercury was flushed from the surface during storm events, while significant dissolved fractions remained. Runoff mercury concentrations were consistently higher than rainfall mercury, suggesting dry deposition accounted for 22% of total mercury in runoff. Atmospheric monitoring at this location showed gaseous elemental mercury was the dominant form (99.5%) followed by reactive gaseous mercury (0.3%) and particulate mercury (0.2%). Comparison of the contributions of wet and dry deposition suggested 80% of total mercury deposition was wet deposited during this study, while dry deposition accounted for the remaining 20%. Statistical correlations revealed rainfall scavenging of reactive gaseous mercury was the main factor controlling dry deposition.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0000959, ucf:46729
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000959
-
-
Title
-
PERVIOUS CONCRETE: A HYDROLOGIC ANALYSIS FOR STORMWATER MANAGEMENT CREDIT.
-
Creator
-
Spence, Joshua, Wanielista, Martin, University of Central Florida
-
Abstract / Description
-
Portland Cement pervious concrete's ability to permit water infiltration has encouraged its use as a stormwater management tool. However, the material has suffered historically poor support due to a number of factors, including failures due to poor mix design and improper construction techniques, concern about lesser structural strength, concern about poor long term performance due to clogging of surface pores and undefined credit for stormwater management. This study focuses on long term...
Show morePortland Cement pervious concrete's ability to permit water infiltration has encouraged its use as a stormwater management tool. However, the material has suffered historically poor support due to a number of factors, including failures due to poor mix design and improper construction techniques, concern about lesser structural strength, concern about poor long term performance due to clogging of surface pores and undefined credit for stormwater management. This study focuses on long term performances of pervious concrete parking lots and their stormwater management credit. Before stormwater management credit could be estimated, it was necessary to develop a testing device to gather information from existing pervious concrete parking lots currently in use. Eight parking lots were examined to determine the infiltration rates of the pervious concrete, as well as to verify the soil makeup beneath pavement. A total of 30 cores were extracted from pervious concrete parking lots and evaluated for infiltration rates. Three of the sites had a pervious concrete section that included a gravel reservoir. Infiltration rates were measured using the application of an embedded single-ring infiltrometer. In an attempt to provide an estimate of credit, a mass balance model was created to be used for simulation of the hydrologic and hydraulic function of pervious concrete sections. The purpose of the model is to predict runoff and recharge volumes for different rainfall conditions and hydraulic properties of the concrete and the soil. The field derived hydraulic data were used to simulate infiltration volumes and rainfall excess given a year of rainfall as used in a mass balance operated within a spreadsheet. The results can be used for assessing stormwater management credit.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001292, ucf:46883
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001292
-
-
Title
-
THE EFFECTIVENESS OF SPECIFICALLY DESIGNED FILTER MEDIA TO REDUCE NITRATE AND ORTHOPHOSPHATE IN STORMWATER RUNOFF.
-
Creator
-
Moberg, Mikhal, Chang, Ni-Bin, University of Central Florida
-
Abstract / Description
-
Throughout Central Florida surface water and ground water are decreasing in quantity and quality in part because of excess Nitrate and Phosphorus nutrients. Stormwater runoff serves as a medium for transport of Nitrate and Phosphorus to surface water and ground water. The goal of this experiment is assess the Nitrate and Phosphorus removal in stormwater using select media. The results of a literature search, batch test experimentation and column test experimentation are used to determine an...
Show moreThroughout Central Florida surface water and ground water are decreasing in quantity and quality in part because of excess Nitrate and Phosphorus nutrients. Stormwater runoff serves as a medium for transport of Nitrate and Phosphorus to surface water and ground water. The goal of this experiment is assess the Nitrate and Phosphorus removal in stormwater using select media. The results of a literature search, batch test experimentation and column test experimentation are used to determine an optimal media blend that may be implemented in detention ponds to reduce Nitrate and Phosphorus. The extensive literature search revealed 32 different media that may be used to remove Nitrate and Phosphorus. Each potential media was qualitatively and quantitatively evaluated based on 5 criteria: 1) relevance, 2) permeability, 3) cost, 4) availability in Florida, and 5) additional environmental benefit. The top 7 performing media: Florida peat, sandy loam, woodchips, crushed oyster shell; crushed limestone, tire crumb and sawdust were selected for batch test experimentation. The aerobic conditions in batch test experimentation prohibited the growth of denitrifying bacteria, therefore media mixes were selected for column test experimentation based on Ammonia and Orthophosphate concentrations. Batch test experimentation showed the most effective media to be 50% sand, 30% tire crumb, 20% sawdust by weight (media mix 1) and 50% sand, 25% sawdust, 15% tire crumb, 10% limestone by weight (media mix 2). Media mix 1, media mix 2 and a control are tested in column test experimentation, where the control is site soil from Hunters Trace development in Ocala, Florida. Column test experimentation models a dry detention pond where water passes through a 48 inch unsaturated zone then a 48 inch saturated zone. To test Nitrate and Orthophosphate removal potential, pond water augmented with Nitrate (0.38, 1.26, 2.5 mg/L NO3-N) and Orthophosphate (0.125, 0.361, 0.785 mg/L PO4-P) was pumped into the columns. Media mix 1 and media mix 2 outperformed the control in both Nitrate and Orthophosphate removal. Media mix 1 and media mix 2 had Nitrate removal efficiencies ranging from 60% to 99% and the control had Nitrate removal efficiencies ranging from 38%-80%. Media mix 1 and media mix 2 averaged Orthophosphate removal efficiencies ranging from approximately 42% to 67%. For every run in every influent Orthophosphate concentration the saturated control added Orthophosphate to the water. The Nitrate and Orthophosphate removal performances for media mix 1 and media mix 2 could not be directly compared because of different influent saturated nutrient concentrations.
Show less
-
Date Issued
-
2008
-
Identifier
-
CFE0002240, ucf:47884
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002240
-
-
Title
-
DEVELOPMENT OF DAILY, MONTHLY, INTER-ANNUAL, AND MEAN ANNUAL HYDROLOGICAL MODELS BASED ON A UNIFIED RUNOFF GENERATION FRAMEWORK.
-
Creator
-
Kheimi, Marwan, Wang, Dingbao, Wahl, Thomas, Singh, Arvind, Zheng, Qipeng, University of Central Florida
-
Abstract / Description
-
The main goal of this dissertation develops a unified model structure for runoff generation based on observations from a large number of catchments. Furthermore, obtaining a comprehensive understanding of the physical controlling factors that control daily, monthly, and annual water balance models. Meanwhile, applying the developed Unified model on different climate conditions, and comparing it with different well-known models.The proposed model was compared with a similar timescale model ...
Show moreThe main goal of this dissertation develops a unified model structure for runoff generation based on observations from a large number of catchments. Furthermore, obtaining a comprehensive understanding of the physical controlling factors that control daily, monthly, and annual water balance models. Meanwhile, applying the developed Unified model on different climate conditions, and comparing it with different well-known models.The proposed model was compared with a similar timescale model (HyMOD, and abcd) and applied on 92 catchments from MOPEX dataset across the United States. The HyMOD and abcd are a well-known daily and monthly hydrological model used on a variety of researchers. The differences between the new model and HyMOD, and abcd include 1) the distribution function for soil water storage capacity is different and the new distribution function leads to the SCS curve number method; and 2) the computation of evaporation is also based on the distribution function considering the spatial variability of available water evaporation. The performance of all models along with parameters used is examined to understand the controlling factors. The generated results were calibrated and validated using the Nash-Sutcliffe efficiency coefficient (NSE), indicating that the Unified model has a moderate better performance against the HyMOD at a daily time scale, and abcd model at a monthly timescale. The proposed model using the SCS-CN method shows the effect of improving the performance.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007478, ucf:52684
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007478
-
-
Title
-
Modeling Annual Water Balance in The Seasonal Budyko Framework.
-
Creator
-
Alimohammadi, Negin, Wang, Dingbao, Hagen, Scott, Madani Larijani, Kaveh, University of Central Florida
-
Abstract / Description
-
In this thesis, the role of soil water storage change on the annual water balance is evaluated based on observations at a large number of watersheds located in a spectrum of climate regions, and an annual water balance model is developed at the seasonal scale based on Budyko hypthesis. The annual water storage change is quantified based on water balance closure given the available data of precipitation, runoff, and evaporation estimated from remote sensing data and meteorology reanalysis. The...
Show moreIn this thesis, the role of soil water storage change on the annual water balance is evaluated based on observations at a large number of watersheds located in a spectrum of climate regions, and an annual water balance model is developed at the seasonal scale based on Budyko hypthesis. The annual water storage change is quantified based on water balance closure given the available data of precipitation, runoff, and evaporation estimated from remote sensing data and meteorology reanalysis. The responses of annual runoff, evaporation, and storage change to the interannual variability of precipitation and potential evaporation are then analyzed. Both runoff and evaporation sensitivities to potential evaporation are higher under energy-limited conditions, but storage change seems to be more sensitive to potential evaporation under the conditions in which water and energy are balanced. Runoff sensitivity to precipitation is higher under energy-limited conditions; but both evaporation and storage change sensitivities to precipitation are higher under water-limited conditions. Therefore, under energy-limited conditions, most of precipitation variability is transferred to runoff variability; but under water-limited conditions, most of precipitation variability is transferred to storage change and some of precipitation variability is transferred to evaporation variability. The main finding of this part is that evaporation variability will be overestimated by assuming negligible storage change in annual water balance, particularly under water-limited conditions. Budyko framework which expresses partitioning of water supply at the mean annual scale, is adapted to be applicable in modeling water cycle in short terms i.e., seasonal and interannual scales. Seasonal aridity index is defined as the ratio of seasonal potential evaporation and the difference between precipitation and storage change. The seasonal water balance is modeled by using a Budyko-type curve with horizontal shifts which leads prediction of seasonal and annual storage changes and evaporation if precipitation, potential evaporation, and runoff data are available.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004509, ucf:49283
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004509
-
-
Title
-
Performance Evaluation of Two Silt Fence Geosynthetic Fabrics During and After Rainfall Event.
-
Creator
-
Dubinsky, Gregg, Chopra, Manoj, Randall, Andrew, Wang, Dingbao, Gogo-Abite, Ikiensinma, University of Central Florida
-
Abstract / Description
-
Silt fence is one of the most widely used perimeter control devices and is considered an industry standard for use in the control of sediment transport from construction sites. Numerous research studies have been conducted on the use of silt fence as a perimeter control, including a number of studies involving controlled laboratory flume tests and outdoor tests performed in the field on construction sites with actual monitored storm events. In field tests, due to the random and uncontrollable...
Show moreSilt fence is one of the most widely used perimeter control devices and is considered an industry standard for use in the control of sediment transport from construction sites. Numerous research studies have been conducted on the use of silt fence as a perimeter control, including a number of studies involving controlled laboratory flume tests and outdoor tests performed in the field on construction sites with actual monitored storm events. In field tests, due to the random and uncontrollable nature of real storm events and field conditions, studies have shown difficulty in evaluating silt fence performance. These field studies have shown the need for performance testing of silt fence in a more controlled environment, which can also simulate the actual use and performance in the field. This research, which is a continuation of ongoing research on silt fence fabrics at UCF Stormwater and Management Academy, was conducted in order to evaluate silt fence performance under simulated field conditions. Presented in this thesis are evaluation of two silt fence fabrics, a woven (ASR 1400) fabric and nonwoven (BSRF) fabric. Both fabrics were installed separately on a tilted test bed filled with a silty-sand soil and subjected to simulated rainfall.Previous field studies on the performance of silt fence fabrics have evaluated the turbidity and sediment removal efficiencies only after the rain event, with the assumption that the efficiency values represent the true overall performance of silt fence. The results of this study revealed that the turbidity and suspended sediment performance efficiencies of silt fence were significantly affected by the time of sampling. The performance efficiencies during rainfall remained less than 55 percent, however, after the rainfall event ended, the performance efficiencies increased over time, reaching performance efficiency upwards of 90 percent. The increase in efficiency after rainfall was due to the constant or decreasing ponding depth behind the silt fence, increased filtration due to fabric clogging, and sedimentation of suspended particles.The nonwoven fabric was found to achieve higher removal efficiencies and flow-through rates both during and after the rain event when compared with the woven fabric. However, over the entire test duration (during and after rainfall combined), the projected overall efficiencies of both fabrics were similar. The projected overall average turbidity performance efficiencies of the woven and nonwoven silt fence fabrics was 80 and 78 percent, respectively. Both fabric types also achieved comparable overall average suspended sediment concentration efficiencies of 79 percent. This result leads to the conclusion that silt fence performance in the field is dependent on three main processes: filtration efficiency occurring during the rain event, filtration and sedimentation efficiency occurring after the rainfall event, and flow-through rate of the silt fence fabrics. Decreases in the flow-through rate lead to increases in the overall efficiency. This thesis quantifies the different mechanisms by which these processes contribute to the overall efficiency of the silt fence system and shows how these processes are affected by different conditions such as the degree of embankment slope and rainfall intensity.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005158, ucf:50688
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005158
-
-
Title
-
Climate and landscape controls on seasonal water balance at the watershed scale.
-
Creator
-
Chen, Xi, Wang, Dingbao, Chopra, Manoj, Hagen, Scott, Sumner, David, University of Central Florida
-
Abstract / Description
-
The main goal of this dissertation is to develop a seasonal water balance model for evaporation, runoff and water storage change based on observations from a large number of watersheds, and further to obtain a comprehensive understanding on the dominant physical controls on intra-annual water balance. Meanwhile, the method for estimating evaporation and water storage based on recession analysis is improved by quantifying the seasonal pattern of the partial contributing area and contributing...
Show moreThe main goal of this dissertation is to develop a seasonal water balance model for evaporation, runoff and water storage change based on observations from a large number of watersheds, and further to obtain a comprehensive understanding on the dominant physical controls on intra-annual water balance. Meanwhile, the method for estimating evaporation and water storage based on recession analysis is improved by quantifying the seasonal pattern of the partial contributing area and contributing storage to base flow during low flow seasons. A new method for quantifying seasonality is developed in this research. The difference between precipitation and soil water storage change, defined as effective precipitation, is considered as the available water. As an analog to climate aridity index, the ratio between monthly potential evaporation and effective precipitation is defined as a monthly aridity index. Water-limited or energy-limited months are defined based on the threshold of 1. Water-limited or energy-limited seasons are defined by aggregating water-limited or energy-limited months, respectively. Seasonal evaporation is modeled by extending the Budyko hypothesis, which is originally for mean annual water balance; while seasonal surface runoff and base flow are modeled by generalizing the proportionality hypothesis originating from the SCS curve number model for surface runoff at the event scale. The developed seasonal evaporation and runoff models are evaluated based on watersheds across the United States. For the extended Budyko model, 250 out of 277 study watersheds have a Nash-Sutcliff efficiency (NSE) higher than 0.5, and for the seasonal runoff model, 179 out of 203 study watersheds have a NSE higher than 0.5. Furthermore, the connection between the seasonal parameters of the developed model and a variety of physical factors in the study watersheds is investigated. For the extended Budyko model, vegetation is identified as an important physical factor that related to the seasonal model parameters. However, the relationship is only strong in water-limited seasons, due to the seasonality of the vegetation coverage. In the seasonal runoff model, the key controlling factors for wetting capacity and initial wetting are soil hydraulic conductivity and maximum rainfall intensity respectively. As for initial evaporation, vegetation is identified as the strongest controlling factor. Besides long-term climate, this research identifies the key controlling factors on seasonal water balance: the effects of soil water storage, vegetation, soil hydraulic conductivity, and storminess. The developed model is applied to the Chipola River watershed and the Apalachicola River basin in Florida for assessing potential climate change impact on the seasonal water balance. The developed model performance is compared with a physically-based distributed hydrologic model of the Soil Water Assessment Tool, showing a good performance for seasonal runoff, evaporation and storage change.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005313, ucf:50519
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005313
-
-
Title
-
A Holistic Analysis of the Long-Term Challenges (&) Potential Benefits of the Green Roof, Solar PV Roofing, and GRIPV Roofing Markets in Orlando, Florida.
-
Creator
-
Kelly, Carolina, Tatari, Omer, Oloufa, Amr, Mayo, Talea, Zheng, Qipeng, University of Central Florida
-
Abstract / Description
-
Green roofs and roof-mounted solar PV arrays have a wide range of environmental and economic benefits, including significantly longer roof lifetimes, reductions in urban runoff, mitigation of the urban heat island (UHI) effect, reduced electricity demand and energy dependence, and/or reduced emissions of greenhouse gases (GHGs) and other harmful pollutants from the electricity generation sector. Consequently, green roofs and solar panels have both become increasingly popular worldwide, and...
Show moreGreen roofs and roof-mounted solar PV arrays have a wide range of environmental and economic benefits, including significantly longer roof lifetimes, reductions in urban runoff, mitigation of the urban heat island (UHI) effect, reduced electricity demand and energy dependence, and/or reduced emissions of greenhouse gases (GHGs) and other harmful pollutants from the electricity generation sector. Consequently, green roofs and solar panels have both become increasingly popular worldwide, and promising new research has emerged for their potential combination in Green Roof Integrated Photovoltaic (GRIPV) roofing applications. However, due to policy resistance, these alternatives still have marginal market shares in the U.S., while GRIPV research and development is still severely limited today. As a result, these options are not yet sufficiently widespread in the United States as to realize their full potential, particularly due to a variety of policy resistance effects with respect to each specific alternative. The steps in the System Dynamics (SD) methodology to be used in this study are summarized as follows. First, based on a comprehensive review of relevant literature, a causal loop diagram (CLD) will be drawn to provide a conceptual illustration of the modeled system. Second, based on the feedback relationships observed in this CLD, a stock-flow diagram (SFD) will be developed to form a quantitative model. Third, the modeled SFD will be tested thoroughly to ensure its structural and behavioral validity with respect to the modeled system in reality using whatever real world data is available. Fourth, different policy scenarios will be simulated within the model to evaluate their long-term effectiveness. Fifth, uncertainty analyses will be performed to evaluate the inherent uncertainties associated with the analyses in this study. Finally, the results observed for the analyses in this study and possible future research steps will be discussed and compared as appropriate.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007406, ucf:52741
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007406
-
-
Title
-
Evaluation of Biosorption Activated Media Under Roadside Swales for Stormwater Quality Improvement & Harvesting.
-
Creator
-
Hood, Andrew, Chopra, Manoj, Wanielista, Martin, Randall, Andrew, University of Central Florida
-
Abstract / Description
-
Stormwater runoff from highways is a source of pollution to surface water bodies and groundwater. This project develops a bio-detention treatment and harvesting system that is incorporated into roadside swales. The bio-detention system uses Bold & Gold(TM), a type of biosorption activated media (BAM), to remove nutrients from simulated highway runoff and then store the water in underground vaults for infiltration, controlled discharge, and/or irrigation and other non-potable applications. In...
Show moreStormwater runoff from highways is a source of pollution to surface water bodies and groundwater. This project develops a bio-detention treatment and harvesting system that is incorporated into roadside swales. The bio-detention system uses Bold & Gold(TM), a type of biosorption activated media (BAM), to remove nutrients from simulated highway runoff and then store the water in underground vaults for infiltration, controlled discharge, and/or irrigation and other non-potable applications. In order to design a bio-detention system, media characteristics and media/water quality relationships are required. Media characteristics determined through testing include: specific gravity, permeability, infiltration, maximum dry density, moisture content of maximum dry density, and particle-size distribution. One of the goals of this experiment is to compare the nitrogen and phosphorous species concentrations in the effluent of BAM to sandy soil for simulated highway runoff. Field scale experiments are done on an elevated test bed that simulates a typical roadway with a swale. The swale portion of the test bed is split into halves using BAM and sandy soil. The simulated stormwater flows over a concrete section, which simulates a roadway, and then over either sod covered sandy soil or BAM. One, one and a half, and three inch storms are each simulated three times with a duration of 30 minutes each. During the simulated storm event, initial samples of the runoff (influent) are taken. The test bed is allowed to drain for two hours after the rainfall event and then samples of each of the net effluents are taken. In addition to the field scale water quality testing, column tests are also preformed on the sandy soil and Bold & Gold(TM) without sod present. Sod farms typically use fertilizer to increase production, thus it is reasonable to assume that the sod will leach nutrients into the soils on the test bed, especially during the initial test runs. The purpose of the column tests is to obtain a general idea of what percentage removals of total phosphorus and total nitrogen are obtained by the sandy soil and Bold & Gold(TM). It is shown that the Bold & Gold(TM) media effluent has significantly lower concentrations of total nitrogen and total phosphorus compared to the effluent of the sandy soil based on an 80% confidence level. The Bold & Gold(TM) has a 41% lower average effluent concentration of total nitrogen than the sandy soil. The Bold & Gold(TM) media has a 78% lower average effluent concentration of total phosphorus than the sandy soil. Using both the column test data in combination with the field scale data, it is determined that the Bold & Gold(TM) BAM system has a total phosphorus removal efficiency of 71%. The removal efficiency is increased when stormwater harvesting is considered. A total phosphorus reduction of 94% is achieved in the bio-detention & harvesting swale system sample design problem.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004312, ucf:52869
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004312
-
-
Title
-
An Assessment of Biosorption Activated Media for the Removal of Pollutants in Up-Flow Stormwater Treatment Systems.
-
Creator
-
Hood, Andrew, Randall, Andrew, Wanielista, Martin, Chopra, Manoj, O'Reilly, Andrew, Moore, Sean, University of Central Florida
-
Abstract / Description
-
Nitrogen and phosphorus are often the limiting nutrients for marine and freshwater systems respectively. Additionally, stormwater often contains elevated levels of pathogens which can pollute the receiving water body and impact reuse applications [1-4]. The reduction of limiting nutrients and pathogens is a common primary target for stormwater best management practices (BMPs) [5]. Traditional BMPs, such as retention/detention treatment ponds require large footprints and may not be practical...
Show moreNitrogen and phosphorus are often the limiting nutrients for marine and freshwater systems respectively. Additionally, stormwater often contains elevated levels of pathogens which can pollute the receiving water body and impact reuse applications [1-4]. The reduction of limiting nutrients and pathogens is a common primary target for stormwater best management practices (BMPs) [5]. Traditional BMPs, such as retention/detention treatment ponds require large footprints and may not be practical in ultra-urban environments where above ground space is limited. Upflow filters utilizing biosorption activated media (BAM) that can be placed underground offer a small footprint alternative. Additionally, BAM upflow filters can be installed at the discharge point of traditional stormwater ponds to provide further treatment. This research simulated stormwater that had already been treated for solids removal; thus, most of the nutrients and solids in the influent were assumed to be as non-settable suspended solids or dissolved solids. Three different BAM mixtures in an upflow filter configuration were compared for the parameters of nitrogen, phosphorus, total coliform, E. coli, and heterotrophic plate count (HPC). Additionally, genetic testing was conducted using Polymerase Chain Reaction (PCR), in conjunction with a nitrogen mass balance, to determine if Anammox was a significant player in the nitrogen removal. The columns were run at both 22-minute and 220-minute Empty Bed Contact Times (EBCTs). All the BAM mixtures analyzed were shown to be capable at the removal of nitrogen, phosphorus, and total coliform during both the 22-minute and 220-minute EBCTs, with BAM #1 having the highest removal performance for all three parameters during both EBCTs. All BAM mixtures experienced an increase in HPC. Additionally, PCR analysis confirmed the presence of Anammox in the biofilm and via mass balance it was determined that the biological nitrogen removal was due to Anammox and endogenous denitrification with Anammox being a significant mechanism.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007817, ucf:52875
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007817
-
-
Title
-
Effluent Water Quality Improvement Using Silt Fences and Stormwater Harvesting.
-
Creator
-
Gogo-Abite, Ikiensinma, Chopra, Manoj, Wanielista, Martin, Nam, Boo Hyun, Weishampel, John, University of Central Florida
-
Abstract / Description
-
Construction sites are among the most common areas to experience soil erosion and sediment transport due to the mandatory foundation tasks such as excavation and land grubbing. Thus, temporary sediment barriers are installed along the perimeter to prevent sediment transport from the site. Erosion and sediment transport control measures may include, but not limited to, physical and chemical processes such as the use of a silt fence and polyacrylamide product. Runoff from construction sites and...
Show moreConstruction sites are among the most common areas to experience soil erosion and sediment transport due to the mandatory foundation tasks such as excavation and land grubbing. Thus, temporary sediment barriers are installed along the perimeter to prevent sediment transport from the site. Erosion and sediment transport control measures may include, but not limited to, physical and chemical processes such as the use of a silt fence and polyacrylamide product. Runoff from construction sites and other impervious surfaces are routinely discharged into ponds for treatment before being released into a receiving water body. Stormwater harvesting from a pond for irrigation of adjacent lands is promoted as one approach to reducing pond discharge while supplementing valuable potable water used for irrigation. The reduction of pond discharge reduces the mass of pollutants in the discharge. In the dissertation, presented is the investigation of the effectiveness of temporary sediment barriers and then, development of a modeling approach to a stormwater harvesting pond to provide a comprehensive stormwater management pollution reduction assessment tool.The first part of the research presents the investigation of the performance efficiencies of silt fence fabrics in turbidity and sediment concentration removal, and the determination of flow-through-rate on simulated construction sites in real time. Two silt fence fabrics, (1) woven and the other (2) nonwoven were subjected to material index property tests and a series of field-scale tests with different rainfall intensities and events for different embankment slopes on a tilting test-bed. Collected influent and effluent samples were analyzed for sediment concentration and turbidity, and the flow-through-rate for each fabric was evaluated. Test results revealed that the woven and nonwoven silt fence achieved 11 and 56 percent average turbidity reduction efficiency, respectively. Each fabric also achieved 20 and 56 percent average sediment concentration removal efficiency, respectively. Fabric flow-through-rates were functions of the rainfall intensity and embankment slope. The nonwoven fabric exhibited higher flow-through-rates than the woven fabric in both field-scale and laboratory tests.In the second part of the study, a Stormwater Harvesting and Assessment for Reduction of Pollution (SHARP) model was developed to predict operation of wet pond used for stormwater harvesting. The model integrates the interaction of surface water and groundwater in a catchment area. The SHARP model was calibrated and validated with actual pond water elevation data from a stormwater pond at Miramar Lakes, Miramar, Florida. Model evaluation showed adequate prediction of pond water elevation with root mean square error between 0.07 and 0.12 m; mean absolute error was between 0.018 and 0.07 m; and relative index of agreement was between 0.74 and 0.98 for both calibration and validation periods. The SHARP model is capable of assessing harvesting safe-yield and discharge from a pond, including the prediction of the percentage of runoff into a harvesting pond that is not discharged.The combination of silt fence and/or polyacrylamide PAM before stormwater harvesting pond in a treatment train for the reduction of pollutants from construction sites has the potential of significantly exceeding a performance standard of 85 percent reduction typically required by local authorities. In fact, the stringent requirement of equaling pre- and post-development pollutant loading is highly achievable by the treatment train approach. The significant contribution from the integration of the SHARP model to the treatment train is that real-time assessment of pollutant loading reduction by volume can be planned and controlled to achieve target performance standards.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004539, ucf:49244
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004539