View All Items
- Title
- PROCESSING OF CUBIC STABILIZED ZIRCONIA ELECTROLYTE MEMBRANES FOR ELECTROLYTE-SUPPORTED SINGLE CELL SOLID OXIDE FUEL CELLS USING TAPE CASTING.
- Creator
-
Coronado Rodriguez, Arturo, Orlovskaya, Nina, University of Central Florida
- Abstract / Description
-
Electrochemical conversion devices are a developing technology that prove to be a viable and more efficient alternative to current environmentally friendly generation devices. As such, constant research has been done in the last few decades to increase their applications and reliability. One of these systems, and the focus of this research, is the single cell Solid Oxide Fuel Cell (SOFC). These systems are a developing technology which main caveat is the need of high operating temperatures...
Show moreElectrochemical conversion devices are a developing technology that prove to be a viable and more efficient alternative to current environmentally friendly generation devices. As such, constant research has been done in the last few decades to increase their applications and reliability. One of these systems, and the focus of this research, is the single cell Solid Oxide Fuel Cell (SOFC). These systems are a developing technology which main caveat is the need of high operating temperatures and costs. As such, most multidisciplinary research has been focused on researching materials and/or processes that help mitigate the costs or lower the operating temperature. The research presented in this paper focused on the manufacturing of a cubic stabilized zirconia (CSZ) electrolyte thin membrane for a single cell SOFC through tape casting. Thus, the process was divided into slurry preparation, tape casting, further processing, and analysis of samples. First the tape was produced reaching optimal viscosity (between 500 to 6000 cP) and minimizing impurities. Then, the slurry was poured into the doctor's blade with a 200 micrometers gap and allowed to dry. Samples were punched from the green tape with a diameter of 28 inches. Afterwards, these samples were pressed and sintered with a force of 218016 N and temperature of 1550 degrees celsius, respectively. These steps are done to maximize density and grain growth and minimize porosity. Lastly, the tape went further analysis and it was stated that further research should be done to determine this tape viability for stationary SOFC application.
Show less - Date Issued
- 2018
- Identifier
- CFH2000414, ucf:45838
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH2000414
- Title
- Decentralized Power Management and Transient Control in Hybrid Fuel Cell Ultra-Capacitor System.
- Creator
-
Madani, Seyed Omid, Das, Tuhin, Kassab, Alain, Lin, Kuo-Chi, Simaan, Marwan, University of Central Florida
- Abstract / Description
-
Solid Oxide Fuel Cells (SOFCs) are considered suitable for alternative energy solutions due to advantages such as high efficiency, fuel flexibility, tolerance to impurities, and potential for combined cycle operations. One of the main operating constraints of SOFCs is fuel starvation, which can occur under fluctuating power demands. It leads to voltage loss and detrimental effects on cell integrity and longevity. In addition, reformer based SOFCs require sufficient steam for fuel reforming to...
Show moreSolid Oxide Fuel Cells (SOFCs) are considered suitable for alternative energy solutions due to advantages such as high efficiency, fuel flexibility, tolerance to impurities, and potential for combined cycle operations. One of the main operating constraints of SOFCs is fuel starvation, which can occur under fluctuating power demands. It leads to voltage loss and detrimental effects on cell integrity and longevity. In addition, reformer based SOFCs require sufficient steam for fuel reforming to avoid carbon deposition and catalyst degradation. Steam to carbon ratio (STCR) is an index indicating availability of the steam in the reformer. This work takes a holistic approach to address the aforementioned concerns in SOFCs, in an attempt to enhance applicability and adaptability of such systems. To this end, we revisit prior investigation on the invariant properties of SOFC systems, that led to prediction of fuel utilization U and STCR in the absence of intrusive and expensive sensing. This work provides further insight into the reasons behind certain SOFC variables being invariant with respect to operating conditions. The work extends the idea of invariant properties to different fuel and reformer types.In SOFCs, transient control is essential for U, especially if the fuel cell is to be operated in a dynamic load-following mode at high fuel utilization. In this research, we formulate a generalized abstraction of this transient control problem. We show that a multi-variable systems approach can be adopted to address this issue in both time and frequency domains, which leads to input shaping. Simulations show the effectiveness of the approach through good disturbance rejection. The work further integrates the aforementioned transient control research with system level control design for SOFC systems hybridized with storage elements. As opposed to earlier works where centralized robust controllers were of interest, here, separate controllers for the fuel cell and storage have been the primary emphasis. Thus, the proposed approach acts as a bridge between existing centralized controls for single fuel cells to decentralized control for power networks consisting of multiple elements. As a first attempt, decentralized control is demonstrated in a SOFC ultra-capacitor hybrid system. The challenge of this approach lies in the absence of direct and explicit communication between individual controllers. The controllers are designed based on a simple, yet effective principle of conservation of energy. Simulations as well as experimental results are presented to demonstrate the validity of these designs.
Show less - Date Issued
- 2014
- Identifier
- CFE0005524, ucf:50305
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005524
- Title
- Manufacturing of Single Solid Oxide Fuel Cells.
- Creator
-
Torres-Caceres, Jonathan, Orlovskaya, Nina, Xu, Yunjun, Das, Tuhin, University of Central Florida
- Abstract / Description
-
Solid oxide fuel cells (SOFCs) are devices that convert chemical energy into electrical energy and have the potential to become a reliable renewable energy source that can be used on a large scale. SOFCs have 3 main components; the electrolyte, the anode, and the cathode. Typically, SOFCs work by reducing oxygen at the cathode into O2- ions which are then transported via the electrolyte to the anode to combine with a fuel such as hydrogen to produce electricity. Research into better materials...
Show moreSolid oxide fuel cells (SOFCs) are devices that convert chemical energy into electrical energy and have the potential to become a reliable renewable energy source that can be used on a large scale. SOFCs have 3 main components; the electrolyte, the anode, and the cathode. Typically, SOFCs work by reducing oxygen at the cathode into O2- ions which are then transported via the electrolyte to the anode to combine with a fuel such as hydrogen to produce electricity. Research into better materials and manufacturing methods is necessary to reduce costs and improve efficiency to make the technology commercially viable.The goal of the research is to optimize and simplify the production of single SOFCs using high performance ceramics. This includes the use of 8mol% Y2O3-ZrO2 (YSZ) and 10mol% Sc2O3-1mol%CeO2-ZrO2 (SCSZ) layered electrolytes which purport higher conductivity than traditional pure YSZ electrolytes. Prior to printing the electrodes onto the electrolyte, the cathode side of the electrolyte was coated with 20mol% Gd2O3-CeO2 (GDC). The GDC coating prevents the formation of a nonconductive La2Zr2O7 pyrochlore layer, which forms due to the interdiffusion of the YSZ electrolyte ceramic and the (La0.6Sr0.4)0.995Fe0.8Co0.2O3 (LSCF) cathode ceramic during sintering. The GDC layer was deposited by spin coating a suspension of 10wt% GDC in ethanol onto the electrolyte. Variation of parameters such as time, speed, and ramp rate were tested. Deposition of the electrodes onto the electrolyte surface was done by screen printing. Ink was produced using a three roll mill from a mixture of ceramic electrode powder, terpineol, and a pore former. The pore former was selected based on its ability to form a uniform well-connected pore matrix within the anode samples that were pressed and sintered. Ink development involved the production of different ratios of powder-to-terpineol inks to vary the viscosity. The different inks were used to print electrodes onto the electrolytes to gauge print quality and consistency. Cells were produced with varying numbers of layers of prints to achieve a desirable thickness. Finally, the densification behaviors of the major materials used to produce the single cells were studied to determine the temperatures at which each component needs to be sintered to achieve the desired density and to determine the order of electrode application, so as to avoid over-densification of the electrodes. Complete cells were tested at the National Energy Technology Laboratory in Morgantown, WV. Cells were tested in a custom-built test stand under constant voltage at 800(&)deg;C with 3% humidified hydrogen as the fuel. Both voltage-current response and impedance spectroscopy tests were conducted after initial startup and after 20 hours of operation. Impedance tests were performed at open circuit voltage and under varying loads in order to analyze the sources of resistance within the cell. A general increase in impedance was found after the 20h operation. Scanning electron micrographs of the cell microstructures found delamination and other defects which reduce performance. Suggestions for eradicating these issues and improving performance have been made.
Show less - Date Issued
- 2013
- Identifier
- CFE0004946, ucf:49641
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004946
- Title
- A multi-scale approach to study Solid Oxide Fuel Cells: from Mechanical Properties and Crystal Structure of the Cell's Materials to the Development of an Interactive and Interconnected Educational Tool.
- Creator
-
Aman, Amjad, Orlovskaya, Nina, Xu, Yunjun, Das, Tuhin, University of Central Florida
- Abstract / Description
-
Solid Oxide Fuel Cells are energy conversion devices that convert chemical energy of a fuel directly into electrical energy. They are known for being fuel-flexible, have minimal harmful emissions, ideal for combined heat and power applications, highly energy-efficient when combined with gas or steam turbines. The current challenges facing the widespread adoption these fuel cells include cost reduction, long-term testing of fully integrated systems, improving the fuel cell stack and system...
Show moreSolid Oxide Fuel Cells are energy conversion devices that convert chemical energy of a fuel directly into electrical energy. They are known for being fuel-flexible, have minimal harmful emissions, ideal for combined heat and power applications, highly energy-efficient when combined with gas or steam turbines. The current challenges facing the widespread adoption these fuel cells include cost reduction, long-term testing of fully integrated systems, improving the fuel cell stack and system performance, and studies related to reliability, robustness and durability. The goal of this dissertation is to further the understanding of the mechanical properties and crystal structure of materials used in the cathode and electrolyte of solid oxide fuel cells, as well as to report on the development of a supplementary educational tool that could be used in course related to fuel cells. The first part of the dissertation relates to the study of LaCoO3 based perovskites that are used as cathode material in solid oxide fuel cells and in other energy-related applications. In-situ neutron diffraction of LaCoO3 perovskite during uniaxial compression was carried out to study crystal structure evolution and texture development. In this study, LaCoO3 was subjected to two cycles of uniaxial loading and unloading with the maximum stress value being 700-900 MPa. The in-situ neutron diffraction revealed the dynamic crystallographic changes occurring which is responsible for the non-linear ferroelastic deformation and the appearance of hysteresis in LaCoO3. At the end of the first cycle, irreversible strain was observed even after the load was removed, which is caused by non-recoverable domain reorientation and texture development. At the end of the second cycle, however, no irreversible strain was observed as domain reorientation seemed fully recovered. Elastic constants were calculated and Young's modulus was estimated for LaCoO3 single crystals oriented along different crystallographic directions. The high temperature mechanical behavior study of LaCoO3 based perovskites is also of prime importance as solid oxide fuel cells operate at high temperatures. Incidentally, it was observed that as opposed to the behavior of most materials, LaCoO3 exhibits stiffening between 700 oC to 900 oC, with the Young's modulus going from a value of ~76 GPa at room temperature to ~120 GPa at 900 oC. In-situ neutron diffraction, XRD and Raman spectroscopy were used to study structural changes occurring in the material as it was heated. The results from these experiments will be discussed.The next portion of the dissertation will focus on electrolytes. Numerical simulation was carried out in order to predict the non-linear load-stress relationship and estimation of biaxial flexure strength in layered electrolytes, during ring-on-ring mechanical testing.Finally, the development of an interactive and inter-connected educational software is presented that could serve as a supplementary tool to teach fuel cell related topics.
Show less - Date Issued
- 2016
- Identifier
- CFE0006436, ucf:51467
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006436
- Title
- Numerical Simulation of Electrolyte-Supported Planar Button Solid Oxide Fuel Cell.
- Creator
-
Aman, Amjad, Orlovskaya, Nina, Xu, Yunjun, Das, Tuhin, University of Central Florida
- Abstract / Description
-
Solid Oxide Fuel Cells are fuel cells that operate at high temperatures usually in the range of 600oC to 1000oC and employ solid ceramics as the electrolyte. In Solid Oxide Fuel Cells oxygen ions (O2-) are the ionic charge carriers. Solid Oxide Fuel Cells are known for their higher electrical efficiency of about 50-60% [1] compared to other types of fuel cells and are considered very suitable in stationary power generation applications. It is very important to study the effects of different...
Show moreSolid Oxide Fuel Cells are fuel cells that operate at high temperatures usually in the range of 600oC to 1000oC and employ solid ceramics as the electrolyte. In Solid Oxide Fuel Cells oxygen ions (O2-) are the ionic charge carriers. Solid Oxide Fuel Cells are known for their higher electrical efficiency of about 50-60% [1] compared to other types of fuel cells and are considered very suitable in stationary power generation applications. It is very important to study the effects of different parameters on the performance of Solid Oxide Fuel Cells and for this purpose the experimental or numerical simulation method can be adopted as the research method of choice. Numerical simulation involves constructing a mathematical model of the Solid Oxide Fuel Cell and use of specifically designed software programs that allows the user to manipulate the model to evaluate the system performance under various configurations and in real time. A model is only usable when it is validated with experimental results. Once it is validated, numerical simulation can give accurate, consistent and efficient results. Modeling allows testing and development of new materials, fuels, geometries, operating conditions without disrupting the existing system configuration. In addition, it is possible to measure internal variables which are experimentally difficult or impossible to measure and study the effects of different operating parameters on power generated, efficiency, current density, maximum temperatures reached, stresses caused by temperature gradients and effects of thermal expansion for electrolytes, electrodes and interconnects.Since Solid Oxide Fuel Cell simulation involves a large number of parameters and complicated equations, mostly Partial Differential Equations, the situation calls for a sophisticated simulation technique and hence a Finite Element Method (FEM) multiphysics approach will be employed. This can provide three-dimensional localized information inside the fuel cell. For this thesis, COMSOL Multiphysics(&)#174; version 4.2a will be used for simulation purposes because it has a Batteries (&) Fuel Cells module, the ability to incorporate custom Partial Differential Equations and the ability to integrate with and utilize the capabilities of other tools like MATLAB(&)#174;, Pro/Engineer(&)#174;, SolidWorks(&)#174;. Fuel Cells can be modeled at the system or stack or cell or the electrode level. This thesis will study Solid Oxide Fuel Cell modeling at the cell level. Once the model can be validated against experimental data for the cell level, then modeling at higher levels can be accomplished in the future. Here the research focus is on Solid Oxide Fuel Cells that use hydrogen as the fuel. The study focuses on solid oxide fuel cells that use 3-layered, 4-layered and 6-layered electrolytes using pure YSZ or pure SCSZ or a combination of layers of YSZ and SCSZ. A major part of this research will be to compare SOFC performance of the different configurations of these electrolytes. The cathode and anode material used are (La0.6Sr0.4)0.95-0.99Co0.2Fe0.8O3 and Ni-YSZ respectively.
Show less - Date Issued
- 2012
- Identifier
- CFE0004349, ucf:49431
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004349