Current Search: Solar cells (x)
View All Items
- Title
- SOLAR AND FUEL CELL CIRCUIT MODELING, ANALYSIS AND INTEGRATIONS WITH POWER CONVERSION CIRCUITS FOR DISTRIBUTED GENERATION.
- Creator
-
Krishnamurthy, Smitha, Yuan, Jiann, University of Central Florida
- Abstract / Description
-
Renewable energy is considered to be one of the most promising alternatives for the growing energy demand in response to depletion of fossil fuels and undesired global warming issue. With such perspective, Solar Cells and Fuel Cells are most viable, environmentally sound, and sustainable energy sources for power generation. Solar and Fuel cells have created great interests in modern applications including distributed energy generation to provide clean energy. The purpose of this thesis was to...
Show moreRenewable energy is considered to be one of the most promising alternatives for the growing energy demand in response to depletion of fossil fuels and undesired global warming issue. With such perspective, Solar Cells and Fuel Cells are most viable, environmentally sound, and sustainable energy sources for power generation. Solar and Fuel cells have created great interests in modern applications including distributed energy generation to provide clean energy. The purpose of this thesis was to perform a detailed analysis and modeling of Solar and Fuel cells using Cadence SPICE, and to investigate dynamic interactions between the modules and power conversion circuits. Equivalent electronic static and dynamic models for Solar and Fuel Cells, their electrical characteristics, and typical power loss mechanisms associated with them are demonstrated with simulation results. Power conversion circuits for integration with the dynamic models of these renewable low voltage sources are specifically chosen to boost and regulate the input low dc voltage from the modules. The scope of this work was to analyze and model solar and fuel cells to study their terminal characteristics, power loss mechanisms, modules and their dynamics when interfaced with power converters, which would lead to better understanding of these renewable sources in power applications.
Show less - Date Issued
- 2009
- Identifier
- CFE0002815, ucf:48100
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002815
- Title
- nanoengineered energy harvesting and storage devices.
- Creator
-
Li, Chao, Thomas, Jayan, Zhai, Lei, Yang, Yang, Gesquiere, Andre, Dong, Yajie, Sun, Wei, University of Central Florida
- Abstract / Description
-
Organic and perovskite solar cells have recently attracted significant attention due to itsflexibility, ease of fabrication and excellent performance. In order to realize even betterperformance for organic and perovskite solar cells, rejuvenated effort towards developingnanostructured electrodes and high quality active layer is necessary.In this dissertation, several strategic directions of enhancing the performance of organicand perovskite solar cells are investigated. An introduction and...
Show moreOrganic and perovskite solar cells have recently attracted significant attention due to itsflexibility, ease of fabrication and excellent performance. In order to realize even betterperformance for organic and perovskite solar cells, rejuvenated effort towards developingnanostructured electrodes and high quality active layer is necessary.In this dissertation, several strategic directions of enhancing the performance of organicand perovskite solar cells are investigated. An introduction and background of organic andperovskite solar cells, which includes motivation, classification and working principles,nanostructured electrode materials and solvent effect on active materials, and devices fabrication,are presented. A facile method, called Spin-on Nanoprinting (SNAP), to fabricate highly orderedZnO-AgNW-ZnO electrode is introduced to enhance the performance of organic solar cell.Subsequently, a ternary solvent method is developed to fabricate high Voc thieno[3,4-b]thiophene/benzodithiophene (PTB7) and indene-C60 bisadduct (ICBA)solar cells. Theperformance of the devices improved about 20% compared to those made by binary solventmethod. In order to understand the fundamental properties of the materials ruling theperformance of the PSCs tested, AFM-based nanoscale characterization techniques includingPulsed-Force-Mode AFM (PFM-AFM) and Mode-Synthesizing AFM (MSAFM) are introduced.These methods are used to study the morphology and physical properties of the structuresconstitutive of the active layers of the PSCs. Conductive-AFM (cAFM) studies reveal localvariations in conductivity in the donor and acceptor phases as well as an increase in photocurrentmeasured in the PTB7:ICBA sample obtained with the ternary solvent processing technique.Moreover, efficient perovskite solar cells with good transparency in the visible wavelength rangehave been developed by a facile and low-temperature PCBM-assisted perovskite growth method.This method results in the formation of perovskite-PCBM hybrid material at the grain boundaries which is observed by EELS mapping and confirmed by steady-state photoluminescence (PL)spectra and transient photocurrent (TP) measurements. This method involves fewer steps andtherefore is less expensive and time consuming than other reported methods. In addition, wereport an all solid state, energy harvesting and storing (ENHANS) filament which integratesperovskite solar cell (PSC) on top of a symmetric supercapacitor (SSC) via a copper filamentwhich works as a shared electrode for direct charge transfer. Developing ENHANS on a copperfilament provides a low-cost solution for flexible self-sufficient energy systems for wearablesand other portable devices. Finally, a summary of this dissertation as well as some potentialfuture directions are presented.
Show less - Date Issued
- 2016
- Identifier
- CFE0006693, ucf:51912
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006693
- Title
- Excellent Surface Passivation for High Efficiency C_Si Solar Cells.
- Creator
-
Bakhshi, Sara, Schoenfeld, Winston, Abdolvand, Reza, Sundaram, Kalpathy, Davis, Kristopher, University of Central Florida
- Abstract / Description
-
Semiconductor surface clean is sometimes perceived as costly but long recognized as pivotal in determining the final semiconductor device performance and yield. In this contribution, we investigated the effectiveness of crystalline silicon surface cleaning by a simple UV-ozone process in comparison to the industry standard RCA clean for silicon photovoltaic applications. We present a unique method of processing the silicon surface effectively by UV-ozone cleaning. Despite being simple, UV...
Show moreSemiconductor surface clean is sometimes perceived as costly but long recognized as pivotal in determining the final semiconductor device performance and yield. In this contribution, we investigated the effectiveness of crystalline silicon surface cleaning by a simple UV-ozone process in comparison to the industry standard RCA clean for silicon photovoltaic applications. We present a unique method of processing the silicon surface effectively by UV-ozone cleaning. Despite being simple, UV-ozone cleaning results in a superior surface passivation quality that is comparable to high-quality RCA clean. When used as a stack dielectric(-)UV-ozone oxide overlaid by aluminum oxide(-)the thickness of UV-ozone oxide plays an important role in determining the passivation quality. Of all treatment times, 15 min of UV-ozone treatment results in an outstanding passivation quality, achieving the effective carrier lifetime of 3 ms and saturation current density of 5 fA/cm2. In addition, we present a simple and effective technique to extract values of electron/hole capture cross-section for the purpose of analyzing the interface passivation quality from already measured surface recombination parameters of saturation current density, interfacial trap density and total fixed charge, instead of measuring on the separately prepared metal-insulated-semiconductor (MIS) samples by the techniques: frequency-dependent parallel conductance or deep-level transient spectroscopy.
Show less - Date Issued
- 2018
- Identifier
- CFE0007154, ucf:52313
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007154
- Title
- OPTIMIZATION OF PROCESS PARAMETERS FOR REDUCED THICKNESS CIGSES THIN FILM SOLAR CELLS.
- Creator
-
Pethe, Shirish, Dhere, Neelkanth, University of Central Florida
- Abstract / Description
-
With the advent of the 21st century, one of the serious problems facing mankind is harmful effects of global warming. Add to that the ever increasing cost of fuel and the importance of development of clean energy resources as alternative to fossil fuel has becomes one of the prime and pressing challenges for modern science and technology in the 21st century. Recent studies have shown that energy related sources account for 50% of the total emission of carbon dioxide in the atmosphere. All...
Show moreWith the advent of the 21st century, one of the serious problems facing mankind is harmful effects of global warming. Add to that the ever increasing cost of fuel and the importance of development of clean energy resources as alternative to fossil fuel has becomes one of the prime and pressing challenges for modern science and technology in the 21st century. Recent studies have shown that energy related sources account for 50% of the total emission of carbon dioxide in the atmosphere. All research activities are focused on developing various technologies that are capable of converting sunlight into electricity with high efficiency and can be produced using a cost-effective process. One of such technologies is the CuIn1-xGaxSe2 (CIGS) and its alloys that can be produced using cost-effective techniques and also exhibit high photo-conversion efficiency. The work presented here discusses some of the fundamental issues related to high volume production of CIGS thin film solar cells. Three principal issues that have been addressed in this work are effect of reduction in absorber thickness on device performance, micrononuniformity involved with amount of sodium and its effect on device performance and lastly the effect of working distance on the properties of molybdenum back contact. An effort has been made to understand the effect of absorber thickness on PV parameters and optimize the process parameters accordingly. Very thin (<1 µm) absorber film were prepared by selenization using metallorganic selenium source in a conventional furnace and by RTP using Se vapor. Sulfurization was carried out using H2S gas. Devices with efficiencies reaching 9% were prepared for very thin (<1 µm) CIGS and CIGSeS thin films. It was shown through this work that the absorber thickness reduction of 64% results in the efficiency drop of only 32%. With further optimization of the reaction process of the absorber layer as well as the other layers higher efficiencies can be achieved. The effect of sodium on the device performance is experimentally verified in this work. To the best of our knowledge the detrimental effect of excess sodium has been verified by experimental data and effort has been made to correlate the variation in PV parameter to theoretical models of effect of sodium. It has been a regular practice to deposit thin barrier layer prior to molybdenum deposition to reduce the micrononuniformities caused due to nonuniform out diffusion of sodium from the soda lime glass. However, it was proven in this work that an optimally thick barrier layer is necessary to reduce the out diffusion of sodium to negligible quantities and thus reduce the micrononuniformities. Molybdenum back contact deposition is a bottleneck in high volume manufacturing due to the current state of art where multi layer molybdenum film needs to be deposited to achieve the required properties. In order to understand and solve this problem experiments were carried out. The effect of working distance (distance between the target and the substrate) on film properties was studied and is presented in this work. During the course of this work efforts were taken to carry out a systematic and detailed study of some of the fundamental issues related to CIGS technology and particular for high volume manufacturing of CIGS PV modules and lay a good foundation for further improvement of PV performance of CIGS thin film solar cells prepared by the two step process of selenization and sulfurization of sputtered metallic precursors.
Show less - Date Issued
- 2010
- Identifier
- CFE0003517, ucf:48940
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003517
- Title
- Advanced Metrology and Diagnostic Loss Analytics for Crystalline Silicon Photovoltaics.
- Creator
-
Schneller, Eric, Schoenfeld, Winston, Thomas, Jayan, Fenton, James, Coffey, Kevin, Sundaram, Kalpathy, University of Central Florida
- Abstract / Description
-
Characterization plays a key role in developing a comprehensive understanding of the structure and performance of photovoltaic devices. High quality characterization methods enable researchers to assess material choices and processing steps, ultimately giving way to improved device performance and reduced manufacturing costs. In this work, several aspects of advanced metrology for crystalline silicon photovoltaic are investigated including in-line applications for manufacturing, off-line...
Show moreCharacterization plays a key role in developing a comprehensive understanding of the structure and performance of photovoltaic devices. High quality characterization methods enable researchers to assess material choices and processing steps, ultimately giving way to improved device performance and reduced manufacturing costs. In this work, several aspects of advanced metrology for crystalline silicon photovoltaic are investigated including in-line applications for manufacturing, off-line applications for research and development, and module/system level applications to evaluate long-term reliability. A frame work was developed to assess the cost and potential value of metrology within a manufacturing line. This framework has been published to an on-line calculator in an effort to provide the solar industry with an intuitive and transparent method of evaluating the economics of in-line metrology. One important use of metrology is in evaluating spatial non-uniformities, as localized defects in large area solar cells often reduce overall device performance. Techniques that probe spatial uniformity were explored and analysis algorithms were developed that provide insights regarding process non-uniformity and its impact on device performance. Finally, a comprehensive suite of module level characterization was developed to accurately evaluate performance and identify degradation mechanisms in field deployed photovoltaic modules. For each of these applications, case-studies were used to demonstrate the value of these techniques and to highlight potential use cases.
Show less - Date Issued
- 2016
- Identifier
- CFE0006499, ucf:51386
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006499
- Title
- SOLAR DRIVEN PHOTOELECTROCHEMICAL WATER SPLITTING FOR HYDROGEN GENERATION USING MULTIPLE BANDGAP TANDEM OF CIGS2 PV CELLS AND THIN FILM PHOTOCATALYST.
- Creator
-
Jahagirdar, Anant, Dhere, Neelkanth, University of Central Florida
- Abstract / Description
-
The main objective of this research was to develop efficient CuIn1-xGaxS2 (CIGS2)/CdS thin film solar cells for photoelectrochemical (PEC) water splitting to produce very pure hydrogen and oxygen. Efficiencies obtained using CIGS2 have been lower than those achieved using CuInSe2 and CuIn1-xGaxSe2. The basic limitation in the efficiencies is attributed to lower open circuit voltages with respect to the bandgap of the material. Presently, the main mechanism used to increase the open circuit...
Show moreThe main objective of this research was to develop efficient CuIn1-xGaxS2 (CIGS2)/CdS thin film solar cells for photoelectrochemical (PEC) water splitting to produce very pure hydrogen and oxygen. Efficiencies obtained using CIGS2 have been lower than those achieved using CuInSe2 and CuIn1-xGaxSe2. The basic limitation in the efficiencies is attributed to lower open circuit voltages with respect to the bandgap of the material. Presently, the main mechanism used to increase the open circuit voltage of these copper chalcopyrites (CuInSe2 and CuInS2) is the addition of gallium. However, addition of gallium has its own challenges. This research was intended to (i) elucidate the advantages and disadvantages of gallium addition, (ii) provide an alternative technique to the photovoltaic (PV) community to increase the open circuit voltage which is independent of gallium additions, (iii) develop highly efficient CIGS2/CdS thin film solar cells and (iv) provide an alternative material in the form of CIGS2/CdS thin film solar cells and an advanced technology in the form of a multiple bandgap tandem for PEC water splitting. High gallium content was achieved by the incorporation of a highly excess copper composition. Attempts to achieve high gallium content produced reasonable but not the best solar cell performance. Few solar cells developed on a molybdenum back contact and an ITO/MoS2 transparent conducting back contact showed a PV conversion efficiency of 7.93% and 5.97%, respectively. The solar cells developed on the ITO/MoS2 back contact form the first generation CIGS2/CdS thin film solar cells and 5.97% is the first ever reported efficiency on an ITO/MoS2 transparent back contact. Reasons for the moderate performance of these solar cells were attributed to significant porosity and remnants of unsulfurized CuGa alloy in the bulk of CIGS2. This was the first attempt to a detailed study of materials and device characteristics of CIGS2/CdS thin film solar cells prepared starting with a highly excess copper content CIGS2 layer. Next, excess copper composition of 1.4 (equivalent to gallium content, x = 0.3) was chosen with the aim to achieve the best efficiency. The open circuit voltage was enhanced by depositing an intermediate layer of intrinsic ZnO between CdS and ZnO:Al layers. The systematic study of requirements for such a layer and further optimization of its thickness to achieve a higher open circuit voltage (which is the greatest challenge of the scientific community) forms an important scientific contribution of this research. The PV parameters for CIGS2/CdS thin film solar cell as measured officially at the National Renewable Energy Laboratory were: open circuit voltage of 830.5 mV, short circuit current density of 21.88 mA/cm2, fill factor of 69.13% and photovoltaic conversion efficiency of 11.99% which sets a new world record for CIGS2 cells developed using sulfurization and the open circuit voltage of 830.5 mV has become the "Voc champion value". New PEC setups with the RuS2 and Ru0.99Fe0.01S2 photoanodes were developed. RuS2 and Ru0.99Fe0.01S2 photoanodes were more stable in the electrolyte and showed better I-V characteristics than the RuO2 anode earlier used. Using two CIGS2/CdS thin film solar cells, a PEC efficiency of 8.78% was achieved with a RuS2 anode and a platinum cathode. Results of this research constitute a significant advance towards achieving practical feasibility and industrially viability of the technology of PEC hydrogen generation by water splitting.
Show less - Date Issued
- 2005
- Identifier
- CFE0000871, ucf:46666
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000871
- Title
- PREPARATION OF EFFICIENT CUIN1-XGAXSE2-YSY/CDS THIN-FILM SOLAR CELLS BY OPTIMIZING THE MOLYBDENUM BACK CONTACT AND USING DIETHYLSELENIDE AS SELENIUM PRECURSOR.
- Creator
-
Kadam, Ankur, Dhere, Neelkanth, University of Central Florida
- Abstract / Description
-
High efficiency CuIn1-xGaxSe2-ySy (CIGSS)/CdS thin-film solar cells were prepared by optimizing the Mo back contact layer and optimizing the parameters for preparing CIGSS absorber layer using diethylselenide as selenium source. The Mo film was sputter deposited on 2.5 cm x 10 cm soda-lime glass using DC magnetron sputtering for studying the adhesion and chemical reactivity with selenium and sulfur containing gas at maximum film growth temperature. Mo being a refractory material develops...
Show moreHigh efficiency CuIn1-xGaxSe2-ySy (CIGSS)/CdS thin-film solar cells were prepared by optimizing the Mo back contact layer and optimizing the parameters for preparing CIGSS absorber layer using diethylselenide as selenium source. The Mo film was sputter deposited on 2.5 cm x 10 cm soda-lime glass using DC magnetron sputtering for studying the adhesion and chemical reactivity with selenium and sulfur containing gas at maximum film growth temperature. Mo being a refractory material develops stresses, nature of which depends on the deposition power and argon pressure. It was found that the deposition sequence with two tensile stressed layers deposited at 200W and 5 x 10-3 Torr argon pressure when sandwiched between three compressively stressed layers deposited at 300 W power and 0.3 x 10-3 Torr argon pressure had the best adhesion, limited reactivity and compact nature. An organo-metallic compound, diethylselenide (DESe) was developed as selenium precursor to prepare CIGSS absorber layers. Metallic precursors Cu-In-Ga layers were annealing in the conventional furnace in the temperature range of 475oC to 515 oC and in the presence of a dilute DESe atmosphere. The films were grown in an indium rich regime. Systematic approaches lead to the optimization of each step involved in the preparation of the absorber layer. Initial experiments were focused on obtaining the range of maximum temperatures required for the growth of the film. The following experiments included optimization of soaking time at maximum temperature, quantity of metallic precursor, and amount of sodium in terms of NaF layer thickness required for selenization. The absorber surface was coated with a 50 to 60 nm thick layer of CdS as hetero-junction partner by chemical bath deposition. A window bi-layer of i:ZnO/ZnO:Al was deposited by RF magnetron sputtering. The thickness of i:ZnO was increased to reduce the shunt resistance to improve open circuit voltage. The cells were completed by depositing a Cr/Ag front contact by thermal evaporation. Efficiencies greater than 13% was achieved on glass substrates. The performance of the cells was co-related with the material properties.
Show less - Date Issued
- 2006
- Identifier
- CFE0001035, ucf:46822
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001035
- Title
- METAL BLACKS AS SCATTERING CENTERS TO INCREASE THE EFFICIENCY OF THIN FILM SOLAR CELLS.
- Creator
-
Panjwani, Deep, Peale, Robert, University of Central Florida
- Abstract / Description
-
Metal nano particles are investigated as scattering centers on front surface of thin-film solar cells to improve efficiency. The principle is that scattering, which is enhanced near the plasmon resonance frequency of the particle and depends on particle size, increases the effective optical path length of incident light, leading to more light absorption in active layer of thin film solar cell. The particular types of particles investigated here are known as "metal-black", well known as an IR...
Show moreMetal nano particles are investigated as scattering centers on front surface of thin-film solar cells to improve efficiency. The principle is that scattering, which is enhanced near the plasmon resonance frequency of the particle and depends on particle size, increases the effective optical path length of incident light, leading to more light absorption in active layer of thin film solar cell. The particular types of particles investigated here are known as "metal-black", well known as an IR absorber for bolometric infrared detectors. Gold-black was deposited on commercial thin-film solar cells using a thermal evaporator in a nitrogen ambient at pressures of ~1 Torr. We suggest that the broad range of length scales for gold black particles, as quantified by scanning electron microscopy, gives rise to efficient scattering over a broad range of wavelengths across the solar spectrum. The solar cell efficiency was determined both as a function of wavelength and for a solar spectrum produced by a Xe lamp and appropriate filters. Up to 20% increase in short-circuit photocurrent, and a 7% increase in efficiency at the maximum power point, were observed.
Show less - Date Issued
- 2011
- Identifier
- CFE0004047, ucf:49153
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004047
- Title
- CORRELATION BETWEEN PREPARATION PARAMETERS AND PROPERTIES OF MOLYBDENUM BACK CONTACT LAYER FOR CIGS THIN FILM SOLAR CELLS.
- Creator
-
Takahashi, Eigo, Dhere, Neelkanth, University of Central Florida
- Abstract / Description
-
Molybdenum (Mo) thin film back contact layers for thin film CuIn(1-x)GaxSe2 (CIGS) solar cells were deposited onto soda lime glass substrates using a direct current (DC) planar magnetron sputtering deposition technique. Requirements for the Mo thin film as a back contact layer for CIGS solar cells are various. Sheet resistance, contact resistance to the CIGS absorber, optical reflectance, surface morphology, and adhesion to the glass substrate are the most important properties that the Mo...
Show moreMolybdenum (Mo) thin film back contact layers for thin film CuIn(1-x)GaxSe2 (CIGS) solar cells were deposited onto soda lime glass substrates using a direct current (DC) planar magnetron sputtering deposition technique. Requirements for the Mo thin film as a back contact layer for CIGS solar cells are various. Sheet resistance, contact resistance to the CIGS absorber, optical reflectance, surface morphology, and adhesion to the glass substrate are the most important properties that the Mo thin film back contact layer must satisfy. Experiments were carried out under various combinations of sputtering power and working gas pressure, for it is well known that mechanical, morphological, optical, and electrical property of a sputter-deposited Mo thin film are dependent on these process parameters. Various properties of each Mo film were measured and discussed. Sheet resistances were measured using a four-point probe equipment and minimum value of 0.25 Ω/sq was obtained for the 0.6 õm-thick Mo film. Average surface roughnesses of each Mo film ranged from 15 to 26 àwere measured by Dektak profilometer which was also employed to measure film thicknesses. Resistivities were calculated from the sheet resistance and film thickness of each film. Minimum resistivity of 11.9 õΩ∙cm was obtained with the Mo thin film deposited at 0.1 mTorr and 250 W. A residual stress analysis was conducted with a bending beam technique with very thin glass strips, and maximum tensile stress of 358 MPa was obtained; however, films did not exhibit a compressive stress. Adhesive strengths were examined for all films with a ÃÂ"Scotch-tapeÃÂ" test, and all films showed a good adhesion to the glass substrate. Sputter-deposited Mo thin films are commonly employed as a back contact layer for CIGS and CuInSe2 (CIS)-based solar cells; however, there are several difficulties in fabricating a qualified back contact layer. Generally, Mo thin films deposited at higher sputtering power and lower working gas pressure tend to exhibit lower resistivity; however, such films have a poor adhesion to the glass substrate. On the other hand, films deposited at lower power and higher gas pressure tend to have a higher resistivity, whereas the films exhibit an excellent adhesion to the glass substrate. Therefore, it has been a practice to employ multi-layered Mo thin film back contact layers to achieve the properties of good adhesion to the glass substrate and low resistivity simultaneously. However, multi layer processes have a lower throughput and higher fabricating cost, and requires more elaborated equipment compared to single layer processes, which are not desirable from the industrial point of view. As can be seen, above mentioned process parameters and the corresponding Mo thin film properties are at the two extreme ends of the spectrum. Hence experiments were conducted to find out the mechanisms which influence the properties of Mo thin films by changing the two process parameters of working gas pressure and sputtering power individually. The relationships between process parameters and above mentioned properties were studied and explained. It was found that by selecting the process parameters properly, less resistive, appropriate-surfaced, and highly adhesive single layer Mo thin films for CIGS solar cells can be achieved.
Show less - Date Issued
- 2010
- Identifier
- CFE0003031, ucf:48353
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003031
- Title
- STUDY OF THE EFFECTS OF SODIUM AND ABSORBER MICROSTRUCTURE FOR THE DEVELOPMENT OF CUIN1-XGAXSE2-YSY THIN FILM SOLAR CELL USING AN ALTERNATIVE SELENIUM PRECURSOR.
- Creator
-
HADAGALI, VINAYKUMAR, DHERE, NEELKANTH, University of Central Florida
- Abstract / Description
-
Thin film solar cells have the potential to be an important contributor to the world energy demand in the 21st century. CuInGaSe2 thin film solar cells have achieved the highest efficiency among all the thin film technologies. A steady progress has been made in the research and development of CuInSe2 based thin film solar cells. However, there are many issues that need to be addressed for the development of CuInSe2 based thin films solar cells. High price of PV modules has been a biggest...
Show moreThin film solar cells have the potential to be an important contributor to the world energy demand in the 21st century. CuInGaSe2 thin film solar cells have achieved the highest efficiency among all the thin film technologies. A steady progress has been made in the research and development of CuInSe2 based thin film solar cells. However, there are many issues that need to be addressed for the development of CuInSe2 based thin films solar cells. High price of PV modules has been a biggest factor impeding the growth of photovoltaic modules for terrestrial application. This thesis tries to address the effects of sodium on the CIGSe and CIGSeS thin film absorbers. A progressive increase in the grain size and the degree of preferred orientation for (112) was observed with the increase in the amount of sodium available during the absorber growth. The distribution of sulfur was also influenced by the microstructure of the film. The increase in the grain size influenced the diffusion of sulfur in the CIGSeS thin film absorber. Deposition of silicon nitride alkali barrier was successfully completed. A new selenium precursor, dimethyl selenide was successfully used for the preparation of CIGSe and CIGSeS thin film solar cells. Systematic approaches lead to the optimization process parameters for the fabrication of the thin films solar cells. CIGSeS thin film solar cell with a reduced thickness of ~2 micron and an efficiency of 9.95% was prepared on sodalime glass substrate. The research presented here proves the potential of dimethyl selenide as selenium precursor to prepare device quality CIGSe absorber. The process can be further optimized to prepare highly efficient absorbers. Electron backscattered diffraction technique was used for first time to analyze the CIGSeS thin film absorbers. Kikuchi patterns and EBSD maps were obtained on the polished CIGSeS thin film absorbers. Grains with various orientations in the EBSD maps were clearly observed. However, it can also be observed that some pixels have not been indexed by the software. This might be due to the departure of crystalline structure of the film from CuInSe2 or the presence of amorphous phases. Data files for indexing and grain orientation of CIGSeS does not exist. However, with the help of lattice parameters and the position of atoms in the base the data file can be created for CIGSeS material.
Show less - Date Issued
- 2009
- Identifier
- CFE0002647, ucf:48192
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002647
- Title
- Study of Surface Passivation Behavior of Crystalline Silicon Solar Cells.
- Creator
-
Ali, Haider, Schoenfeld, Winston, Coffey, Kevin, Gaume, Romain, Thomas, Jayan, Chanda, Debashis, University of Central Florida
- Abstract / Description
-
To achieve efficiencies approaching the theoretical limit of 29.4% for industrially manufactured solar cells based on crystalline silicon, it is essential to have very low surface recombination velocities at both the front and rear surfaces of the silicon substrate. Typically, the substrate surfaces feature contacted and uncontacted regions, and recombination should be limited for both to maximize the energy conversion efficiency.Uncontacted silicon surfaces are often passivated by the...
Show moreTo achieve efficiencies approaching the theoretical limit of 29.4% for industrially manufactured solar cells based on crystalline silicon, it is essential to have very low surface recombination velocities at both the front and rear surfaces of the silicon substrate. Typically, the substrate surfaces feature contacted and uncontacted regions, and recombination should be limited for both to maximize the energy conversion efficiency.Uncontacted silicon surfaces are often passivated by the deposition of silicon nitride (SiNx) or an aluminum oxide film with SiNx as capping layer (Al2O3/SiNx stack). Further, proper surface preparation and cleaning of Si wafers prior to deposition also plays an important role in minimizing surface recombination. In the present work, the effect of various cleans based on different combinations of HCl, HF, HNO3, and ozonated deionized water (DIO3) on surface passivation quality of boron-diffused and undiffused {100} n-type Cz Si wafers was studied. It was observed that for SiNx passivated Si, carrier lifetime was strongly influenced by cleaning variations and that a DIO3-last treatment resulted in higher lifetimes. Moreover, DIO3+HF+HCl?HF?DIO3 and HNO3?HF?HNO3 cleans emerged as potential low-cost alternatives to HCl/HF clean in the photovoltaics industry.Transmission electron microscopy (TEM) studies were carried out to get insight into the origin of variation in carrier lifetimes for different cleans. Changes in the surface cleans used were not found to have a significant impact on Al2O3/SiNx passivation stacks.ivHowever, an oxide-last cleaning step prior to deposition of SiNx passivation layers was found to create a 1-2 nm SiOx tunnel layer resulting in excellent carrier lifetimes.For contacted regions, low surface recombination can be achieved using passivated carrier selective contacts, which not only passivate the silicon surface and improve the open circuit voltage, but are also carrier selective. This means they only allow the majority carrier to be transported to the metal contacts, limiting recombination by reducing the number of minority carriers. Typically, carrier selectivity is achieved using a thin metal oxide layer, such as titanium oxide (TiO2) for electron-selective contacts and molybdenum oxide (MoOx) for hole-selective contacts. This is normally coupled with a very thin passivation layer (e.g., a-Si:H, SiOx) between the silicon wafer and the contact.In the present work, TiO2-based electron-selective passivated rear contacts were investigated for n-type c-Si solar cells. A low efficiency of 9.8% was obtained for cells featuring a-Si:H/TiO2 rear contact, which can be attributed to rapid degradation of surface passivation of a-Si:H upon FGA at 350(&)deg;C due to hydrogen evolution leading to generation of defect states which increases recombination and hence a much lower Voc of 365 mV is obtained. On the other hand, 21.6% efficiency for cells featuring SiO2/TiO2 rear contact is due to excellent passivation of SiO2/TiO2 stack upon FGA anneal, which can be attributed to the presence of 1-2 nm SiO2 layer whose passivation performance improves upon FGA at 350(&)deg;C whereas presence of large number of oxygen vacancies in TiO2-x reduces rear contact resistivity.vLikewise, MoOx-based contacts were investigated as hole-selective front contacts for an n-type cell with a boron-doped emitter. It has been previously reported that cell efficiencies up to 22.5% have been achieved with silicon heterojunction solar cells featuring a front contact wherein MoOx is inserted between a-Si:H(i) and hydrogenated indium oxide (IO:H). However, device performance and FF degrades upon annealing beyond 130(&)deg;C. In this work, contact resistivity measurements by TLM technique in combination with TEM studies revealed that degradation of device performance is due to oxygen diffusion into MoOx upon annealing in air which reduces concentration of oxygen vacancies in MoOx and increases contact resistivity. The increase in contact resistivity reduces FF resulting in deterioration of device performance.
Show less - Date Issued
- 2017
- Identifier
- CFE0006554, ucf:51351
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006554
- Title
- EFFECT OF COMPOSITION, MORPHOLOGY AND SEMICONDUCTING PROPERTIES ON THE EFFICIENCY OF CUIN1-XGAXSE2-YSY THIN-FILM SOLAR CELLS PREPARED BY RAPID THERMAL PROCESSING.
- Creator
-
Kulkarni, Sachin, Dhere, Neelkanth, University of Central Florida
- Abstract / Description
-
A rapid thermal processing (RTP) reactor for the preparation of graded CuIn1-xGaxSe2-ySy (CIGSeS) thin-film solar cells has been designed, assembled and is being used at the Photovoltaic Materials Laboratory of the Florida Solar Energy Center. CIGSeS films having the optimum composition, morphology, and semiconducting properties were prepared using RTP. Initially films having various Cu/(In+Ga) ratios were prepared. In the next step selenium incorporation in these films was optimized,...
Show moreA rapid thermal processing (RTP) reactor for the preparation of graded CuIn1-xGaxSe2-ySy (CIGSeS) thin-film solar cells has been designed, assembled and is being used at the Photovoltaic Materials Laboratory of the Florida Solar Energy Center. CIGSeS films having the optimum composition, morphology, and semiconducting properties were prepared using RTP. Initially films having various Cu/(In+Ga) ratios were prepared. In the next step selenium incorporation in these films was optimized, followed by sulfur incorporation in the surface to increase the bandgap at the surface. The compositional gradient of sulfur was fine-tuned so as to increase the conversion efficiency. Materials properties of these films were characterized by optical microscopy, SEM, AFM, EDS, XRD, GIXRD, AES, and EPMA. The completed cells were extensively studied by electrical characterization. Current-voltage (I-V), external and internal quantum efficiency (EQE and IQE), capacitance-voltage (C-V), and light beam induced current (LBIC) analysis were carried out. Current Density (J)-Voltage (V) curves were obtained at different temperatures. The temperature dependence of the open circuit voltage and fill factor has been estimated. The bandgap value calculated from the intercept of the linear extrapolation was ~1.1-1.2 eV. Capacitance-voltage analysis gave a carrier density of ~4.0 x 1015 cm-3. Semiconductor properties analysis of CuIn1-xGaxSe2-ySy (CIGSeS) thin-film solar cells has been carried out. The values of various PV parameters determined using this analysis were as follows: shunt resistance (Rp) of ~510 Ohms-cm2 under illumination and ~1300 Ohms-cm2 in dark, series resistance (Rs) of ~0.8 Ohms-cm2 under illumination and ~1.7 Ohms-cm2 in dark, diode quality factor (A) of 1.87, and reverse saturation current density (Jo) of 1.5 x 10-7A cm-2. The efficiency of 12.78% obtained during this research is the highest efficiency obtained by any University or National Lab for copper chalcopyrite solar cells prepared by RTP. CIGS2 cells have a better match to the solar spectrum due to their comparatively higher band-gap as compared to CIGS cells. However, they are presently limited to efficiencies below 13% which is considerably lower than that of CIGS cells of 19.9%. One of the reasons for this lower efficiency is the conduction band offset between the CIGS2 absorber layer and the CdS heterojunction partner layer. The band offset value between CIGS2 and CdS was estimated by a combination of ultraviolet photoelectron spectroscopy (UPS) and Inverse Photoemission Spectroscopy (IPES) to be -0.45 eV, i.e. a cliff is present between these two layers, enhancing the recombination at the junction, this limits the efficiency of CIGS2 wide-gap chalcopyrite solar cells.
Show less - Date Issued
- 2008
- Identifier
- CFE0002467, ucf:47728
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002467
- Title
- DEVELOPMENT OF TRANSPARENT AND CONDUCTING BACK CONTACTS ON CDS/CDTE SOLAR CELLS FOR PHOTOELECTROCHEMICAL APPLICATION.
- Creator
-
Avachat, Upendra, Dhere, Neelkanth, University of Central Florida
- Abstract / Description
-
The development of devices with high efficiencies can only be attained by tandem structures which are important to the advancement of thin-film photoelectrochemical (PEC) and photovoltaic (PV) technologies. FSEC PV Materials Lab has developed a PEC cell using multiple bandgap tandem of thin film PV cells and a photocatalyst for hydrogen production by water splitting. CdS/CdTe solar cell, a promising candidate for low-cost, thin-film PV cell is used as one of the thin film solar cells in a PEC...
Show moreThe development of devices with high efficiencies can only be attained by tandem structures which are important to the advancement of thin-film photoelectrochemical (PEC) and photovoltaic (PV) technologies. FSEC PV Materials Lab has developed a PEC cell using multiple bandgap tandem of thin film PV cells and a photocatalyst for hydrogen production by water splitting. CdS/CdTe solar cell, a promising candidate for low-cost, thin-film PV cell is used as one of the thin film solar cells in a PEC cell. This research work focuses on developing various back contacts with good transparency in the infrared region (~750 - 1150 nm) for a CdS/CdTe solar cell. CdS/CdTe solar cells were prepared with three different configurations, Glass/SnO2:F/CdS/CdTe/ZnTe:Cu/ITO/Ni-Al (series 1), Glass/SnO2:F/CdS/CdTe/Cu2Te/ITO/Ni-Al (series 2), Glass/SnO2:F/CdS/CdTe/Br-Me etching/Cu/ITO/Ni-Al (series 3). The back contact preparation process for a CdS/CdTe solar cell involves the deposition of a primary p-type back contact interface layer followed by the deposition of transparent and conducting ITO and a Ni-Al outer metallization layer. Back contact interface layers were initially optimized on glass substrates. A ZnTe:Cu layer for a series 1 cell was deposited using hot wall vacuum evaporation (HWVE). Cu2Te and Cu thin films for series 2 and series 3 cells were deposited by vacuum evaporation. HWVE technique produced highly stoichiometric ZnTe:Cu thin films with cubic phase having {111} texture orientation. All the back contact interface layers demonstrated better transparency in the infrared region on glass substrate. Formation of crystalline phase and texture orientation were studied using X-ray diffraction (XRD). The composition was analyzed by electron probe microanalysis (EPMA). Transparency measurements were carried out by optical transmission spectroscopy. Thickness measurements were carried out using a DEKTAK surface profile measuring system. Finally, completed solar cells for all the series were characterized for current-voltage (I-V) measurements using the I-V measurement setup developed at the FSEC PV Materials Lab. The PV parameters for the best series 1 cell measured at an irradiance of 1000 W/m2 were: open circuit voltage, Voc = 630 mV, short circuit current, Isc = 7.68 mA/ cm2, fill factor, FF = 37.91 %, efficiency, ç = 3.06 %. The PV parameters for the best series 2 cell measured were: Voc = 690 mV, Isc = 8.7 mA/ cm2, FF = 45.19 %, ç = 4.8 %. The PV parameters for the best series 3 cell measured were: Voc = 550 mV, Isc = 9.70 mA/ cm2, FF = 42.25 %, ç = 5.63 %. The loss in efficiency was attributed to the possible formation of a non-ohmic contact at the interface of CdTe and back contact interface layer. Decrease in the fill factor was attributed to high series resistance in the device.
Show less - Date Issued
- 2005
- Identifier
- CFE0000682, ucf:46483
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000682
- Title
- PREPARATION AND CHARACTERIZATION OF CIGSS SOLAR CELLS AND PV MODULE DATA ANALYSIS.
- Creator
-
Shirolikar, Jyoti, Dhere, Neelkanth, University of Central Florida
- Abstract / Description
-
In this thesis, multiple activities have been carried out in order to improve the process of CIGSS solar cell fabrication on a 4" x 4" substrate. The process of CIGSS solar cell fabrication at FSEC's PV Materials Lab involves a series of steps that were all carried out manually in the past. A LABVIEW program has been written to carry out automated sputter deposition of Mo back contact, CuGa, In metallic precursors on a soda lime glass substrate using a stepper motor control for better...
Show moreIn this thesis, multiple activities have been carried out in order to improve the process of CIGSS solar cell fabrication on a 4" x 4" substrate. The process of CIGSS solar cell fabrication at FSEC's PV Materials Lab involves a series of steps that were all carried out manually in the past. A LABVIEW program has been written to carry out automated sputter deposition of Mo back contact, CuGa, In metallic precursors on a soda lime glass substrate using a stepper motor control for better uniformity. Further, selenization/ sulfurization of these precursors was carried out using rapid thermal processing (RTP). CIGS films were sulfurized using chemical bath deposition (CBD). ZnO:Al was deposited on the CIGSS films using RF sputtering. A separate LABVIEW program was written to automate the process of ZnO:Al deposition. Ni/Al contact fingers were deposited on the ZnO:Al layer using the e-beam evaporation technique. Further, in order to test these solar cells in-house, a simple current-voltage (IV) tracer was fabricated using LABVIEW. A quantum efficiency (QE) measurement setup was built with guidance from the National Renewable Energy Laboratory (NREL). Lastly, analysis of data from photovoltaic (PV) modules installed on the FSEC test site has been carried out using a LABVIEW program in order to find out their rate of degradation as time progresses. A 'C' program has also been written as an aid for keeping a daily log of errors in data and for troubleshooting of the same.
Show less - Date Issued
- 2005
- Identifier
- CFE0000859, ucf:46645
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000859
- Title
- CHARACTERIZATION OF MICROSTRUCTURAL AND CHEMICAL FEATURES IN CU-IN-GA-SE-S-BASED THIN-FILM SOLAR CELLS.
- Creator
-
Halbe, Ankush, Heinrich, Helge, University of Central Florida
- Abstract / Description
-
Thin-film solar cells are potentially low-cost devices to convert sunlight into electricity. Improvements in the conversion efficiencies of these cells reduce material utilization cost and make it commercially viable. Solar cells from the Thin-Film Physics Group, ETH Zurich, Switzerland and the Florida Solar Energy Center (FSEC), UCF were characterized for defects and other microstructural features within the thin-film structure and at the interfaces using transmission electron microscopy ...
Show moreThin-film solar cells are potentially low-cost devices to convert sunlight into electricity. Improvements in the conversion efficiencies of these cells reduce material utilization cost and make it commercially viable. Solar cells from the Thin-Film Physics Group, ETH Zurich, Switzerland and the Florida Solar Energy Center (FSEC), UCF were characterized for defects and other microstructural features within the thin-film structure and at the interfaces using transmission electron microscopy (TEM). The present thesis aims to provide a feedback to these groups on their deposition processes to understand the correlations between processing, resulting microstructures, and the conversion efficiencies of these devices. Also, an optical equipment measuring photocurrents from a solar cell was developed for the identification of defect-prone regions of a thin-film solar cell. The focused ion beam (FIB) technique was used to prepare TEM samples. Bright-field TEM along with scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDS) including elemental distribution line scans and maps were extensively used for characterizing the absorber layer and interfaces both above and below the absorber layer. Energy-filtered transmission electron microscopy (EFTEM) was applied in cases where EDS results were inconclusive due to the overlap of X-ray energies of certain elements, especially molybdenum and sulfur. Samples from ETH Zurich were characterized for changes in the CIGS (Cu(In,Ga)Se2) microstructure due to sodium incorporation from soda-lime glass or from a post-deposition treatment with NaF as a function of CIGS deposition temperature. The CIGS-CdS interface becomes smoother and the small columnar CIGS grains close to the Mo back contact disappear with increasing CIGS deposition temperature. At 773 K the two sodium incorporation routes result in large differences in the microstructures with a significantly larger grain size for the samples after post-deposition Na incorporation. Porosity was observed in the absorber layer close to the back contact in the samples from FSEC. The reason for porosity could be materials evaporation in the gallium beam of the FIB or a processing effect. The porosity certainly indicates heterogeneities of the composition of the absorber layer near the back contact. A Mo-Se rich layer (possibly MoSe2) was formed at the interface between CIGS/CIGSS and Mo improving the quality of the junction. Other chemical heterogeneities include un-sulfurized Cu-Ga deposits, residual Se from the selenization/ sulfurization chamber in CIGS2 and the formation of Cu-rich regions which are attributed to decomposition effects in the Ga beam of the FIB. Wavy absorber surfaces were observed for some of the cells with occasional discontinuities in the metal grids. The 50 nm thick CdS layer, however, remained continuous in all the samples under investigation. For a sample with a transparent back contact, a 10 nm Mo layer was deposited on ITO (indium tin oxide) before deposition of the CIGS2 (Cu(In,Ga)S2) layer. EFTEM maps indicate that a MoS2 layer does not form for such a Mo/MoS2-ITO back contact. Instead, absorber layer material diffuses through the thin Mo layer onto the ITO forming two layers of CIGS2 on either side of Mo with different compositions. Furthermore, an optical beam induced current (OBIC) system with micron level resolution was successfully developed and preliminary photocurrent maps were acquired to microscopically identify regions within a thin-film solar cell with undesirable microstructural features. Such a system, when fully operational, will provide the means for the identification of special regions from where samples for TEM analysis can be obtained using the FIB technique to study specifically the defects responsible for local variations in solar cell properties.
Show less - Date Issued
- 2006
- Identifier
- CFE0001022, ucf:46807
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001022
- Title
- CHARACTERIZATION OF ALUMINUM DOPED ZINC OXIDE THIN FILMS FOR PHOTOVOLTAIC APPLICATIONS.
- Creator
-
Shantheyanda, Bojanna, Kalpathy, Sundaram, University of Central Florida
- Abstract / Description
-
Growing demand for clean source of energy in the recent years has increased the manufacture of solar cells for converting sun energy directly into electricity. Research has been carried out around the world to make a cheaper and more efficient solar cell technology by employing new architectural designs and developing new materials to serve as light absorbers and charge carriers. Aluminum doped Zinc Oxide thin film, a Transparent conductive Oxides (TCO) is used as a window material in the...
Show moreGrowing demand for clean source of energy in the recent years has increased the manufacture of solar cells for converting sun energy directly into electricity. Research has been carried out around the world to make a cheaper and more efficient solar cell technology by employing new architectural designs and developing new materials to serve as light absorbers and charge carriers. Aluminum doped Zinc Oxide thin film, a Transparent conductive Oxides (TCO) is used as a window material in the solar cell these days. Its increased stability in the reduced ambient, less expensive and more abundance make it popular among the other TCOÃÂ's. It is the aim of this work to obtain a significantly low resistive ZnO:Al thin film with good transparency. Detailed electrical and materials studies is carried out on the film in order to expand knowledge and understanding. RF magnetron sputtering has been carried out at various substrate temperatures using argon, oxygen and hydrogen gases with various ratios to deposit this polycrystalline films on thermally grown SiO2 and glass wafer. The composition of the films has been determined by X-ray Photoelectron Spectroscopy and the identification of phases present have been made using X-ray diffraction experiment. Surface imaging of the film and roughness calculations are carried out using Scanning Electron Microscopy and Atomic Force Microscopy respectively. Determination of resistivity using 4-Probe technique and transparency using UV spectrophotometer were carried out as a part of electrical and optical characterization on the obtained thin film.The deposited thin films were later annealed in vacuum at various high temperatures and the change in material and electrical properties were analyzed.
Show less - Date Issued
- 2010
- Identifier
- CFE0003142, ucf:48623
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003142
- Title
- Light Trapping in Thin Film Crystalline Silicon Solar Cells.
- Creator
-
Boroumand Azad, Javaneh, Chanda, Debashis, Peale, Robert, Del Barco, Enrique, Flitsiyan, Elena, Schoenfeld, Winston, University of Central Florida
- Abstract / Description
-
This dissertation presents numerical and experimental studies of a unified light trapping approach that is extremely important for all practical solar cells. A 2D hexagonal Bravais lattice diffractive pattern is studied in conjunction with the verification of the reflection mechanisms of single and double layer anti-reflective coatings in the broad range of wavelength 400 nm - 1100 nm. By varying thickness and conformity, we obtained the optimal parameters which minimize the broadband...
Show moreThis dissertation presents numerical and experimental studies of a unified light trapping approach that is extremely important for all practical solar cells. A 2D hexagonal Bravais lattice diffractive pattern is studied in conjunction with the verification of the reflection mechanisms of single and double layer anti-reflective coatings in the broad range of wavelength 400 nm - 1100 nm. By varying thickness and conformity, we obtained the optimal parameters which minimize the broadband reflection from the nanostructured crystalline silicon surface over a wide range of angle 0(&)deg;-65(&)deg;. While the analytical design of broadband, angle independent anti-reflection coatings on nanostructured surfaces remains a scientific challenge, numerical optimization proves a viable alternative, paving the path towards practical implementation of the light trapping solar cells. A 3 (&)#181;m thick light trapping solar cell is modeled in order to predict and maximize combined electron-photon harvesting in ultrathin crystalline silicon solar cells. It is shown that the higher charge carrier generation and collection in this design compensates the absorption and recombination losses and ultimately results in an increase in energy conversion efficiency. Further, 20 (&)#181;m and 100 (&)#181;m thick functional solar cells with the light trapping scheme are studied. The efficiency improvement is observed numerically and experimentally due to photon absorption enhancement in the light trapping cells with respect to a bare cell of same thickness.
Show less - Date Issued
- 2017
- Identifier
- CFE0006936, ucf:51654
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006936
- Title
- Atmospheric Pressure Chemical Vapor Deposition of Functional Oxide Materials for Crystalline Silicon Solar Cells.
- Creator
-
Davis, Kristopher, Schoenfeld, Winston, Likamwa, Patrick, Moharam, Jim, Habermann, Dirk, University of Central Florida
- Abstract / Description
-
Functional oxides are versatile materials that can simultaneously enable efficiency gains and cost reductions in crystalline silicon (c-Si) solar cells. In this work, the deposition of functional oxide materials using atmospheric pressure chemical vapor deposition (APCVD) and the integration of these materials into c-Si solar cells are explored. Specifically, thin oxide films and multi-layer film stacks are utilized for the following purposes: (1) to minimize front surface reflectance without...
Show moreFunctional oxides are versatile materials that can simultaneously enable efficiency gains and cost reductions in crystalline silicon (c-Si) solar cells. In this work, the deposition of functional oxide materials using atmospheric pressure chemical vapor deposition (APCVD) and the integration of these materials into c-Si solar cells are explored. Specifically, thin oxide films and multi-layer film stacks are utilized for the following purposes: (1) to minimize front surface reflectance without increasing parasitic absorption within the anti-reflection coating(s); (2) to maximize internal back reflectance of rear passivated cells, thereby increasing optical absorption of weakly absorbed long wavelength photons (? (>) 900 nm); (3) to minimize recombination losses by providing excellent surface passivation; and (4) to improve doping processes during cell manufacturing (e.g., emitter and surface field formation) by functioning as highly controllable dopant sources compatible with in-line diffusion processes. The oxide materials deposited by APCVD include amorphous and polycrystalline titanium oxide, aluminum oxide, boron-doped aluminum oxide, silicon oxide, phosphosilicate glass, and borosilicate glass. The microstructure, optical properties, and electronic properties of these films are characterized for different deposition conditions. Additionally, the impact of these materials on the performance of different types of c-Si solar cells is presented using both simulated and experimental current-voltage curves.
Show less - Date Issued
- 2015
- Identifier
- CFE0005599, ucf:50267
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005599
- Title
- CHEMICAL BATH DEPOSITION OF GROUP II-VI SEMICONDUCTOR THIN FILMS FOR SOLAR CELLS APPLICATIONS.
- Creator
-
KHALLAF, HANI, Chow, Lee, University of Central Florida
- Abstract / Description
-
Chemical bath deposition (CBD) is the analog in liquid phase of the well-known chemical vapor deposition technique in the vapor phase. In CBD, deposition of thin films takes place from aqueous solutions at low temperatures by a chemical reaction between dissolved precursors, with the help of a complexing agent. Among all techniques used to grow Group II-VI semiconductors, CBD has the advantage of being a simple, low temperature, and inexpensive large-area deposition technique. So far, its...
Show moreChemical bath deposition (CBD) is the analog in liquid phase of the well-known chemical vapor deposition technique in the vapor phase. In CBD, deposition of thin films takes place from aqueous solutions at low temperatures by a chemical reaction between dissolved precursors, with the help of a complexing agent. Among all techniques used to grow Group II-VI semiconductors, CBD has the advantage of being a simple, low temperature, and inexpensive large-area deposition technique. So far, its contribution in thin film solar cells industry has been mainly limited to growing n-type CdS and/or ZnS window layers for CdTe-based and CIGS-based solar cells. In this work we first optimize the CBD process of CdS using nitrilotriacetic acid and hydrazine as complexing agents as an alternative to ammonia. We then study the effect of the cadmium precursor on the optical/electrical properties, as well as crystal structure, morphology, and composition of CBD-CdS films. A better understanding of the CBD process of CdS as a whole has been achieved and high quality CBD-CdS films have been obtained. Next, we investigate in-situ doping of CBD-CdS with group III elements, such as B, Al, In, and Ga. The objective is to show that CBD is capable of not only growing CdS but also of doping it to reduce its resistivity and, as a result, facilitate its use in solar cells as well as other optoelectronic device fabrication. A four orders of magnitude drop of film resistivity has been achieved without a significant change in film bandgap, structure, or morphology. Finally, we test the possibility of using CBD to grow transparent conducting oxide (TCO) films, such as Al-doped ZnO films and cadmium stannate films. First, we study CBD of ZnO and later in-situ doping of ZnO using Al. High quality ZnO thin films have been grown using CBD with the help of four different complexing agents. Post heat treatment in argon ambient helped reduce resistivity of CBD-ZnO undoped films to ~ 10-1 Ω-cm. In-situ doping of such films using Al shows promising results. Such films could be an alternative to indium tin oxide (ITO) layers that are commonly used as TCO layers for solar cells. Another approach is to use CBD to grow CdO and SnO2 thin films, with the goal of obtaining Cd2SnO4 by later annealing of these two layers. Cadmium stannate is another TCO candidate that could replace ITO in the near future. We have succeeded in growing CBD-CdO thin films using three different complexing agents. Undoped CBD-CdO films with a resistivity as low as 1.01 x10-2 -cm and a carrier density as high as 2.59 x 1020 cm-3 have been obtained. SnO2 films have been successfully grown using CBD. Fabrication of Cadmium stannate thin films using CBD is investigated. In summary, our objective to expand the use of CBD beyond just growing CdS and ZnS, and to test the possibility of using it for in-situ doping of group II-VI semiconductors as well as TCO layers fabrication proved to be successful. We believe that this may have a significant impact on solar cells as well as other optoelectronic devices fabrication industry, due to the simplicity and the cost-effectiveness of CBD.
Show less - Date Issued
- 2009
- Identifier
- CFE0002860, ucf:48071
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002860
- Title
- INVESTIGATIONS ON MORPHOLOGY, SPECTROSCOPY AND NEAR-INFRARED PHOTORESPONSE SENSITIZATION OF CONJUGATED POLYMERS IN ORGANIC PHOTOVOLTAICS.
- Creator
-
Hu, Zhongjian, Gesquiere, Andre, University of Central Florida
- Abstract / Description
-
Conjugated polymer architecture and morphology are two of the key factors that determine corresponding opto-electronic device performance. It is well-known that conjugated polymers display a variety of conformations and exhibit aggregation in their materials and even for individual polymer chains. The intrinsic structural heterogeneity of conjugated polymers strongly complicates the active layer morphology and phase separation, which are crucial for photoinduced charge generation and...
Show moreConjugated polymer architecture and morphology are two of the key factors that determine corresponding opto-electronic device performance. It is well-known that conjugated polymers display a variety of conformations and exhibit aggregation in their materials and even for individual polymer chains. The intrinsic structural heterogeneity of conjugated polymers strongly complicates the active layer morphology and phase separation, which are crucial for photoinduced charge generation and transport in polymer based bulk heterojunction-organic photovoltaics device (BHJ-OPVs). Aiming to probe the molecular level correlations between conjugated polymer architecture, morphology and optoelectronic properties, single molecule spectroscopy (SMS) and single particle spectroscopy (SPS) were employed. The molecular level folding properties of conjugated polymers were studied and correlated to the chemical architecture and rigidness of the polymer backbones by means of SMS and single molecule polarization anisotropy imaging. First, a block copolymer consisting of poly(3-hexylthiophene) (P3HT) and fullerene (C60) was investigated due to its potential for forming active layers in OPV devices that exhibit long-term phase stability and efficient exciton dissociation into free charge carriers. It was demonstrated that the grafting of the C60-containing block does not significantly affect the conformation of the backbone of the P3HT block. Next, a series of thiophene based polymers showing different macroscale crystallization behavior were investigated. The rigidness of the conjugated polymer backbones was found to be correlated with the chemical architecture of the molecules. However, even the polymers that show no folding in their respective crystals and are thus expected to be the most rigid, still exhibit folding at the single molecule level. From this work it is clear that besides chemical architecture, intermolecular interactions in the crystal structure also need to be considered. For conjugated polymer materials, in this dissertation specifically the blends of conjugated polymers with fullerenes as found in the active layer of OPVs, the investigation of the molecular level correlations between conjugated polymer architecture, morphology and optoelectronic properties can be prohibitively complex due to the presence of a large number of molecules. Furthermore, in the research presented herein, as well as in the literature, it has been clearly shown that the polymer molecules themselves exhibit severe heterogeneity in their properties (chain morphology, aggregation, optical and electronic properties). Therefore, in order to simplify the structure-property investigations concerning nanodomains in BHJ-OPVs, we developed P3HT/PC60BM (PC60BM: -phenyl-C61-butyric acid methyl ester) composite nanoparticles (NPs). The size of the nanoparticles corresponds with a few polymer and fullerene domains when considering a similarly sized volume in the active layer of OPVs. Single particle spectroscopy combined with this unique nanoparticle material system reveals variations in molecular conformation and aggregation of the conjugated polymer chains upon doping with different weight percentages of fullerene. These newly developed NPs were embedded in a hole-injection device to study the exciton-hole polaron interactions and the charge transfer processes at the interface between a hole-transporting layer and the NPs. Pronounced charge trapping was observed for donor-acceptor blend NPs due to the large amount of photogenerated free charge carriers. Besides fundamental studies on morphology-property relations for thiophene based conjugated polymers, fabrication of BHJ-OPVs based on P3HT and PC60BM was also completed. Low band gap polymer PTB-7 (polybenzo dithiophene-2,6-diyl]thieno thiophenediyl]]) and a near-infrared (NIR) small dye molecule were incorporated into active layers of these P3HT/PC60BM BHJ-OPVs to expand the photoresponse of the devices. The effects of doping the P3HT/PC60BM BHJ-OPVs with PTB-7 and NIR dye on the device performance and film morphology were investigated. The doping of PTB-7 can efficiently extend the photoresponse of the resultant devices into the NIR regime and improve the device performance with respect to the reference (undoped) devices, demonstrating an elegant and pragmatic approach in improving light-harvesting efficiency in BHJ-OPVs.
Show less - Date Issued
- 2011
- Identifier
- CFE0004042, ucf:49167
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004042