Current Search: St. Johns River (x)
View All Items
- Title
- COUPLING OF HYDRODYNAMIC AND WAVE MODELS FOR STORM TIDE SIMULATIONS: A CASE STUDY FOR HURRICANE FLOYD (1999).
- Creator
-
Funakoshi, Yuji, Hagen, Scott, University of Central Florida
- Abstract / Description
-
This dissertation presents the development of a two-dimensional St. Johns River model and the coupling of hydrodynamic and wave models for the simulation of storm tides. The hydrodynamic model employed for calculating tides and surges is ADCIRC-2DDI (ADvanced CIRCulation Model for Shelves, Coasts and Estuaries, Two-Dimensional Depth Integrated) developed by Luettich et al. (1992). The finite element based model solves the fully nonlinear shallow water equations in the generalized wave...
Show moreThis dissertation presents the development of a two-dimensional St. Johns River model and the coupling of hydrodynamic and wave models for the simulation of storm tides. The hydrodynamic model employed for calculating tides and surges is ADCIRC-2DDI (ADvanced CIRCulation Model for Shelves, Coasts and Estuaries, Two-Dimensional Depth Integrated) developed by Luettich et al. (1992). The finite element based model solves the fully nonlinear shallow water equations in the generalized wave continuity form. Hydrodynamic applications are operated with the following forcings: 1) astronomical tides, 2) inflows from tributaries, 3) meteorological effects (winds and pressure), and 4) waves (wind-induced waves). The wave model applied for wind-induced wave simulation is the third-generation SWAN (Simulating WAves Nearshore), applicable to the estimation of wave parameters in coastal areas and estuaries. The SWAN model is governed by the wave action balance equation driven by wind, sea surface elevations and current conditions (Holthuijsen et al. 2004). The overall work is comprised of three major phases: 1) To develop a model domain that incorporates the entire East Coast of the United States, Gulf of Mexico and Caribbean Sea, while honing in on the St. Johns River area; 2) To employ output from the SWAN model with the ADCIRC model and produce a uni-directional coupling of the two models in order to investigate the effects of the wave radiation stresses; 3) To couple the ADCIRC model with the SWAN model to describe the complete interactions of the two physical processes. Model calibration and comparisons are accomplished in three steps. First, astronomical tide simulation results are calibrated with historical NOS (National Ocean Service) tide data. Second, overland and riverine flows and meteorological effects are included, and computed river levels are compared with the historical NOS water level data. Finally, the storm tides generated by Hurricane Floyd are simulated and compared with historical data. This research results in a prototype for real-time simulation of tides and waves for flash flood and river-stage forecasting efforts of the NWS Forecasting Centers that border coastal areas. The following two main conclusions are reported: 1) regardless of whether one uses uni-coupling or coupling, wind-induced waves result in an approximately 10 15 % higher peak storm tide level than without any coupling; and 2) the wave-current interaction described by the coupling model results in decreasing peaks and increasing troughs in the storm tide hydrograph. Two main corollary conclusions are also drawn from a 122-day hindcast for the period spanning June 1 October 1, 2005. First, wind forcing for the St. Johns River is equal to or greater than that of astronomic tides and generally supersedes the impact of inflows, while pressure variations have a minimal impact. Secondly, water levels inside the St. Johns River depend on the wind forcings in the deep ocean; however, if one applies an elevation hydrograph boundary condition from a large-scale domain model to a local-scale domain model the results are highly accurate.
Show less - Date Issued
- 2006
- Identifier
- CFE0001394, ucf:46957
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001394
- Title
- ANALYSIS OF THE PHYSICAL FORCING MECHANISMS INFLUENCING SALINITY TRANSPORT FOR THE LOWER ST. JOHNS RIVER.
- Creator
-
Giardino, Derek, Hagen, Scott, University of Central Florida
- Abstract / Description
-
The focus of this thesis is the forcing mechanisms incorporated with salinity transport for the Lower St. Johns River. There are two primary analyses performed: a historical data analysis of primary forcing mechanisms to determine the importance of each individual influence, and a tidal hydrodynamics analysis for the Lower St. Johns River to determine the required tidal constituents for an accurate resynthesis. This thesis is a preliminary effort in understanding salinity transport for the...
Show moreThe focus of this thesis is the forcing mechanisms incorporated with salinity transport for the Lower St. Johns River. There are two primary analyses performed: a historical data analysis of primary forcing mechanisms to determine the importance of each individual influence, and a tidal hydrodynamics analysis for the Lower St. Johns River to determine the required tidal constituents for an accurate resynthesis. This thesis is a preliminary effort in understanding salinity transport for the Lower St. Johns River for engineering projects such as the dredging of navigation canals and freshwater withdrawal from the river. The analysis of the physical forcing mechanisms is performed by examining the impact of precipitation, tides, and wind advection on historical salinity measurements. Three 30-day periods were selected for the analysis, to correspond with representative peak, most-variable, and low-salinity periods for 1999. The analysis displays that wind advection is the dominant forcing mechanism for the movement of salinity over a 30 day duration; however all mechanisms have an impact at some level. The dominant forcing mechanism is also dependent on the period of record examined where tidal influence is vital for durations of hours to a day, while freshwater inflow has more significance over a longer period due to climatological variation. A two-dimensional finite difference numerical model is utilized to generate a one month tidal elevations and velocities simulations that incorporates geometry, nonlinear advection and quadratic bottom friction. Several combinations of tidal constituents are extracted from this modeled tidal signal to investigate which combination of tidal constituents produces an accurate tidal resynthesis for the Lower St. Johns River. The analysis displays the need for 39 total tidal harmonic constituents to accurately resynthesize the original tidal signal. Additionally, due to the nonlinear nature of shallow water, the influence of the overtides for upstream or downstream locations in the Lower St. Johns River is shown to be spatially variable for different frequencies depending on the geometry. The combination of the constituent analysis and the historical analysis provides the basis information needed for the development of an accurate salinity transport model for the Lower St. Johns River.
Show less - Date Issued
- 2009
- Identifier
- CFE0002665, ucf:48197
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002665
- Title
- State (Hydrodynamics) Identification in the Lower St. Johns River using the Ensemble Kalman filter.
- Creator
-
Tamura, Hitoshi, Hagen, Scott, Wang, Dingbao, Bacopoulos, Peter, University of Central Florida
- Abstract / Description
-
This thesis presents a method, Ensemble Kalman Filter (EnKF), applied to a high-resolution, shallow water equations model (DG ADCIRC-2DDI) of the Lower St. Johns River with observation data at four gauging stations. EnKF, a sequential data assimilation method for non-linear problems, is developed for tidal flow simulation for estimation of state variables, i.e., water levels and depth-integrated currents for overland unstructured finite element meshes. The shallow water equations model is...
Show moreThis thesis presents a method, Ensemble Kalman Filter (EnKF), applied to a high-resolution, shallow water equations model (DG ADCIRC-2DDI) of the Lower St. Johns River with observation data at four gauging stations. EnKF, a sequential data assimilation method for non-linear problems, is developed for tidal flow simulation for estimation of state variables, i.e., water levels and depth-integrated currents for overland unstructured finite element meshes. The shallow water equations model is combined with observation data, which provides the basis of the EnKF applications. In this thesis, EnKF is incorporated into DG ADCIRC-2DDI code to estimate the state variables.Upon its development, DG ADCIRC-2DDI with EnKF is first validated by implementing to a low-resolution, shallow water equations model of a quarter annular harbor with synthetic observation data at six gauging stations. Second, DG ADCIRC-2DDI with EnKF is implemented to a high-resolution, shallow water equations model of the Lower St. Johns River with real observation data at four gauging stations. Third, four different experiments are performed by applying DG ADCIRC-2DDI with EnKF to the Lower St. Johns River.
Show less - Date Issued
- 2012
- Identifier
- CFE0004331, ucf:49455
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004331
- Title
- A visit to Florida, February 1870: Florida revisited after thiry years, 1897 & 1902.
- Creator
-
Browne, Alice E., PALMM (Project)
- Abstract / Description
-
Handwritten text in prebound ledger book describing three trips from New York to Florida. Includes many commercially produced pictures as well as sketches by the author.
- Date Issued
- 1902
- Date Created
- 1902
- Identifier
- AAB6389QF00001/19/200508/04/200516415BftmIa D0QF, FHP C CF 2005-01-19, huc30801, huc3080102, FCLA url 20050208xOCLC, 58801269, CF00001670, 2578650, ucf:26124
- Format
- E-book
- PURL
- http://purl.flvc.org/fcla/tc/fhp/CF00001670.jpg