Current Search: Three-dimensional (x)
View All Items
- Title
- EFFECTS OF POSITION, ORIENTATION, AND INFILTRATING MATERIAL ON THREE DIMENSIONAL PRINTING MODELS.
- Creator
-
Frascati, Joseph, Kalita, Samar, University of Central Florida
- Abstract / Description
-
This research defined and evaluated mechanical properties of prototypes created using a plaster based three-dimensional printing (3DP) system commercialized by Z Corporation. 3DP is one of the fastest growing forms of rapid prototyping. Till date, there is little or no information available on material properties of infiltrants used in 3DP. This research work evaluated and documented some of the useful information for 3DP users by determining the effect of build position, build orientation...
Show moreThis research defined and evaluated mechanical properties of prototypes created using a plaster based three-dimensional printing (3DP) system commercialized by Z Corporation. 3DP is one of the fastest growing forms of rapid prototyping. Till date, there is little or no information available on material properties of infiltrants used in 3DP. This research work evaluated and documented some of the useful information for 3DP users by determining the effect of build position, build orientation and infiltration materials on the strength of prototypes. The study was performed in three different phases to limit the processing variables and to arrive at definite conclusions on relationship between materials properties and process variables. All specimens were built on the Z Corporation Spectrum Z510. In Phase 1, effects of build location on specimen strength was studied. Phase 2 evaluated the influence of build orientation on specimen strength. System Three Clear Coat epoxy was used during both Phase 1 and 2 for infiltration. The same infiltrant was in both of these phases to limit variables. Using results of Phase 1 & 2, the effects of infiltrant material on tensile strength of prototypes was calculated in Phase 3. Seven different infiltrating materials were tested during Phase 3. These materials included 2 cyanoacrylates and 5 epoxies. The tensile strength, flexural strength, and density and porosity of the specimens were determined and correlated. In each phase six specimens were built for each test performed. Two consistent methods of infiltration were utilized to infiltrate cyanoacrylates and epoxies into the as-processed specimens. It was found that the orientation of the specimen has more of an impact on strength than position within the build platform. The layering build process of rapid prototyping creates a variance in strength depending on the build orientation. Specimens infiltrated with epoxy achieved much higher strength than the specimens infiltrated with cyanoacrylate. Cyanoacrylates may be a good choice in making color concept models; however they are not good candidate materials where strength requirement is important. The epoxies with lower viscosities demonstrated higher part strength among the materials tested.
Show less - Date Issued
- 2007
- Identifier
- CFE0001920, ucf:47482
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001920
- Title
- THREE-DIMENSIONAL MICRON-SCALE METAL PHOTONIC CRYSTALS VIA MULTI-PHOTON DIRECT LASER WRITING AND ELECTROLESS METAL DEPOSITION.
- Creator
-
Tal, Amir, Kuebler, Stephen, University of Central Florida
- Abstract / Description
-
Three-dimensional (3D) metal photonic crystals (MPCs) can exhibit interesting electromagnetic properties such as ultra-wide photonic or "plasmonic" band gaps, selectively tailored thermal emission, extrinsically modified absorption, and negative refractive index. Yet, optical-wavelength 3D MPCs remain relatively unexplored due to the challenges posed by their fabrication. This work explores the use of multi-photon direct laser writing (DLW) coupled with electroless metallization as a means...
Show moreThree-dimensional (3D) metal photonic crystals (MPCs) can exhibit interesting electromagnetic properties such as ultra-wide photonic or "plasmonic" band gaps, selectively tailored thermal emission, extrinsically modified absorption, and negative refractive index. Yet, optical-wavelength 3D MPCs remain relatively unexplored due to the challenges posed by their fabrication. This work explores the use of multi-photon direct laser writing (DLW) coupled with electroless metallization as a means for preparing MPCs. Multi-photon DLW was used to prepare polymeric photonic crystal (PC) templates having a targeted micron-scale structure and form. MPCs were then created by metallizing the polymeric PCs via wet-chemical electroless deposition. The electromagnetic properties of the polymeric PCs and the metallized structures were characterized using Fourier transform infrared spectroscopy. It is shown that metallization transforms the optical properties of the structures from those of conventional 3D dielectric PCs to those consistent with 3D MPCs that exhibit ultra-wide photonic band gaps. These data demonstrate that multi-photon DLW followed by electroless deposition provides a viable and highly flexible route to MPCs, opening a new path to metal photonic materials and devices.
Show less - Date Issued
- 2007
- Identifier
- CFE0001787, ucf:47261
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001787
- Title
- A Review and Selective Analysis of 3D Display Technologies for Anatomical Education.
- Creator
-
Hackett, Matthew, Proctor, Michael, Allen, Christine, Wiegand, Rudolf, Sims, Valerie, University of Central Florida
- Abstract / Description
-
The study of anatomy is complex and difficult for students in both graduate and undergraduate education. Researchers have attempted to improve anatomical education with the inclusion of three-dimensional visualization, with the prevailing finding that 3D is beneficial to students. However, there is limited research on the relative efficacy of different 3D modalities, including monoscopic, stereoscopic, and autostereoscopic displays. This study analyzes educational performance, confidence,...
Show moreThe study of anatomy is complex and difficult for students in both graduate and undergraduate education. Researchers have attempted to improve anatomical education with the inclusion of three-dimensional visualization, with the prevailing finding that 3D is beneficial to students. However, there is limited research on the relative efficacy of different 3D modalities, including monoscopic, stereoscopic, and autostereoscopic displays. This study analyzes educational performance, confidence, cognitive load, visual-spatial ability, and technology acceptance in participants using autostereoscopic 3D visualization (holograms), monoscopic 3D visualization (3DPDFs), and a control visualization (2D printed images). Participants were randomized into three treatment groups: holograms (n=60), 3DPDFs (n=60), and printed images (n=59). Participants completed a pre-test followed by a self-study period using the treatment visualization. Immediately following the study period, participants completed the NASA TLX cognitive load instrument, a technology acceptance instrument, visual-spatial ability instruments, a confidence instrument, and a post-test. Post-test results showed the hologram treatment group (Mdn=80.0) performed significantly better than both 3DPDF (Mdn=66.7, p=.008) and printed images (Mdn=66.7, p=.007). Participants in the hologram and 3DPDF treatment groups reported lower cognitive load compared to the printed image treatment (p (<) .01). Participants also responded more positively towards the holograms than printed images (p (<) .001). Overall, the holograms demonstrated significant learning improvement over printed images and monoscopic 3DPDF models. This finding suggests additional depth cues from holographic visualization, notably head-motion parallax and stereopsis, provide substantial benefit towards understanding spatial anatomy. The reduction in cognitive load suggests monoscopic and autostereoscopic 3D may utilize the visual system more efficiently than printed images, thereby reducing mental effort during the learning process. Finally, participants reported positive perceptions of holograms suggesting implementation of holographic displays would be met with enthusiasm from student populations. These findings highlight the need for additional studies regarding the effect of novel 3D technologies on learning performance.
Show less - Date Issued
- 2018
- Identifier
- CFE0007569, ucf:52571
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007569
- Title
- Development of a Single Sensor Approach for Capturing Three-Dimensional, Time Resolved Flame and Velocity Information.
- Creator
-
Reyes, Jonathan, Ahmed, Kareem, Kassab, Alain, Kapat, Jayanta, University of Central Florida
- Abstract / Description
-
Performing non-intrusive measurements is the key to acquiring accurate information representative of what is being observed. The act of measuring often changes the environment being observed altering the information that is being obtained. Due to this, the community of fluid scientists have gravitated towards using laser-based measurements to observe the phenomena occurring in their experiments. The study of fluids has advanced since this point, utilizing techniques such as planar laser...
Show morePerforming non-intrusive measurements is the key to acquiring accurate information representative of what is being observed. The act of measuring often changes the environment being observed altering the information that is being obtained. Due to this, the community of fluid scientists have gravitated towards using laser-based measurements to observe the phenomena occurring in their experiments. The study of fluids has advanced since this point, utilizing techniques such as planar laser induced florescence (PLIF), particle image velocimetry (PIV), laser doppler velocimetry (LDV), particle doppler anemometry (PDA), etc. to acquire chemical species information and velocity information. These techniques, though, are inherently two-dimensional and cannot fully describe a flow field. In the area of reacting flow fields (combustion) acquiring the local fuel to air ratio information is increasingly important. Without it, scientist must rely on global one-dimensional metering techniques to correlate the fuel to air ratio of their flow field of interest. By knowing the fuel to air ratio locally and spatially across a flame, the location of products and reactants can be deduced, giving insight into any inefficiencies associated with a burner. Knowing the spatial fuel air field also gives insights into the density gradient associated with the flow field. Discussed in this work will be the development of a non-intrusive local fuel-air measurement technique and an expansion of the PIV technique into the third dimension, tomographic PIV, utilizing only one camera to do so for each measurement. The local fuel-air measurement is performed by recording two species (C2* and CH*) simultaneously and calibrating their ratio to the known fuel-air field. Tomographic PIV is performed by utilizing fiber coupling to acquire multiple viewpoints utilizing a single camera.
Show less - Date Issued
- 2019
- Identifier
- CFE0007523, ucf:52602
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007523
- Title
- Fabrication and Characterization of Spatially-Variant Self-Collimating Photonic Crystals.
- Creator
-
Digaum, Jennefir, Kuebler, Stephen, Kik, Pieter, Schoenfeld, Winston, Likamwa, Patrick, Gesquiere, Andre, University of Central Florida
- Abstract / Description
-
Spatially-variant photonic crystals (SVPCs) created using materials having a low refractive index are shown to be capable of abruptly controlling light beams with high polarization selectivity. SVPCs are photonic crystals for which the orientation of the unit cell is controllably varied throughout the lattice to control the flow of light. Multi-photon lithography in a photo polymer was used to fabricate three-dimensional SVPCs that direct the flow of light around a 90 degree bend. The optical...
Show moreSpatially-variant photonic crystals (SVPCs) created using materials having a low refractive index are shown to be capable of abruptly controlling light beams with high polarization selectivity. SVPCs are photonic crystals for which the orientation of the unit cell is controllably varied throughout the lattice to control the flow of light. Multi-photon lithography in a photo polymer was used to fabricate three-dimensional SVPCs that direct the flow of light around a 90 degree bend. The optical performance of the SVPCs was characterized using a scanning optical-fiber system that introduced light onto the input face of a structure and measured the intensity of light emanating from the output faces.As a proof-of-concept, SVPCs that can bend a beam at a wavelength of ?0 = 2.94 ?m were fabricated in the photo-polymer SU-8. The SVPCs were shown to direct infrared light of one polarization through a sharp bend, while the other polarization propagated straight through the SVPC, when the volumetric fill-factor is near 50%. The peak-to-peak ratio of intensities of the bent- and straight-through beams was 8:1, and a power efficiency of 8% was achieved. The low efficiency is attributed to optical absorption in SU-8 at ?0 = 2.94 ?m.SVPCs that can bend a beam at telecommunications wavelengths near ?0 = 1.55 ?m were fabricated by multi-photon lithography in the photo-polymer IP-Dip. IP-Dip was chosen over SU 8 to enable fabrication of finer features, as are needed for an SVPC scaled in size to operate at shorter wavelengths. Experimental characterization shows that these particular SVPCs provide effective control of the vertically polarized beam at ?0 = 1.55 ?m, when the volumetric fill-factor is around 46%. The beam bending peak efficiency was found to be 52.5% with a peak-to-peak ratio between the bent- and straight-through beams of 78.7. Additionally, these SVPCs can bend a light beam with a broad bandwidth of 153 nm that encompasses both the C- and S-bands of the telecommunications window. Furthermore, the SVPCs have high tolerance to misalignment, in which an offset of the input beam by as much as 6 ?m causes the beam-bending efficiency to drop no more than 50%. Finally, it is shown that these particular SVPCs can bend beams without significantly distorting the mode profile. This work introduces a new scheme for controlling light that should be useful for integrated photonics.The penultimate chapter discusses nonlinear phenomena that were observed during the optical characterization of the SVPCs using a high peak-power amplified femtosecond laser system. The first of these effects is referred to as "super-collimation", in which the beam bending peak efficiency of certain SVPCs increases with input intensity, reaching as high as 68%. The second effect pertains to nonlinear imaging of light at ?0 = 1.55 ?m scattered from an SVPC and detected using a silicon-CCD camera. This effect enables beam bending within the device to be imaged in real time. The dissertation concludes with an outlook for SVPCs, discussing potential applications and challenges that must be addressed to advance their use in photonics.
Show less - Date Issued
- 2016
- Identifier
- CFE0006527, ucf:51371
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006527
- Title
- High Performance Three-Dimensional Display Based on Polymer-Stabilized Blue Phase Liquid Crystal.
- Creator
-
Liu, Yifan, Wu, Shintson, Kik, Pieter, Likamwa, Patrick, Zhai, Lei, University of Central Florida
- Abstract / Description
-
Autostereoscopic 2D/3D (two-dimension/three-dimension) switchable display has been attracting great interest in research and practical applications for several years. Among different autostereoscopic solutions, direction-multiplexed 3D displays based on microlens array or parallax barrier are viewed as the most promising candidates, due to their compatibility with conventional 2D display technologies. These 2D/3D switchable display system designs rely on fast switching display panels and...
Show moreAutostereoscopic 2D/3D (two-dimension/three-dimension) switchable display has been attracting great interest in research and practical applications for several years. Among different autostereoscopic solutions, direction-multiplexed 3D displays based on microlens array or parallax barrier are viewed as the most promising candidates, due to their compatibility with conventional 2D display technologies. These 2D/3D switchable display system designs rely on fast switching display panels and photonics devices, including adaptive focus microlens array and switchable slit array. Polymer-stabilized blue phase liquid crystal (PS-BPLC) material provides a possible solution to meet the aforementioned fast response time requirement. However, present display and photonic devices based on blue phase liquid crystals suffer from several drawbacks, such as low contrast ratio, relatively large hysteresis and short lifetime. In this dissertation, we investigate the material properties of PS-BPLC so as to improve the performance of PS-BPLC devices. Then we propose several PS-BPLC devices for the autostereoscopic 2D/3D switchable display system designs. In the first part we evaluate the optical rotatory power (ORP) of blue phase liquid crystal, which is proven to be the primary reason for causing the low contrast ratio of PS-BPLC display systems. Those material parameters affecting the ORP of PS-BPLC are investigated and an empirical equation is proposed to calculate the polarization rotation angle in a PS-BPLC cell. Then several optical compensation methods are proposed to compensate the impact of ORP and to improve the contrast ratio of a display system. The pros and cons of each solution are discussed accordingly. In the second part, we propose two adaptive focus microlens array structures and a high efficiency switchable slit array based on the PS-BPLC materials. By optimizing the design parameters, these devices can be applied to the 2D/3D switchable display systems. In the last section, we focus on another factor that affects the performance and lifetime of PS-BPLC devices and systems: the UV exposure condition. The impact of UV exposure wavelength, dosage, uniformity, and photo-initiator are investigated. We demonstrate that by optimizing the UV exposure condition, we can reduce the hysteresis of PS-BPLC and improve its long term stability.
Show less - Date Issued
- 2014
- Identifier
- CFE0005370, ucf:50466
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005370
- Title
- Dissecting the Components of Neuropathic Pain.
- Creator
-
George, Dale, Lambert, Stephen, Kim, Yoon-Seong, Fernandez-Valle, Cristina, Ebert, Steven, University of Central Florida
- Abstract / Description
-
Pain is a public health issue affecting the lives of nearly 116 million adults in the US, annually. Understanding the physiological and phenotypic changes that occur in response to painful stimuli is of tremendous clinical interest, but, the complexity of pain and the lack of a representative in vitro model hinders the development of new therapeutics. Pain stimuli are first perceived and transmitted by the neurons within the dorsal root ganglia (DRG) which become hyperexcitable under these...
Show morePain is a public health issue affecting the lives of nearly 116 million adults in the US, annually. Understanding the physiological and phenotypic changes that occur in response to painful stimuli is of tremendous clinical interest, but, the complexity of pain and the lack of a representative in vitro model hinders the development of new therapeutics. Pain stimuli are first perceived and transmitted by the neurons within the dorsal root ganglia (DRG) which become hyperexcitable under these conditions. It has now been established that satellite glial cells (SGCs) that ensheathe the DRG cell body actively contribute to this neuronal dysregulation. To understand the role of SGCs in this pain circuit, first, we looked at the development of SGCs within the DRG of rats, and we showed that SGCs developed postnatally, and appeared morphologically, transcriptionally and functionally similar to Schwann cells precursors (SCs), supporting the idea that these cells may exhibit multipotent behavior. Secondly, we describe here, a three-dimensional in vitro model of the DRG which is functionally characterized on a microelectrode array (MEA). This model can be used to assess the long-term recording of spontaneous activity from bundles of axons while preserving the neuronal-SGC interactions similar to those observed in vivo. Furthermore, using capsaicin, an agonist of the TRPV1 nociceptive receptor, we show that this model can be used as an in vitro assay to acquire evoked responses from nociceptive neurons. Overall, this study advances our knowledge on the development and differentiation of SGCs and establishes a novel functional three-dimensional model for the study of SGCs. This model can now be used as a tool to study the underlying basis of neuronal dysregulation in pain.
Show less - Date Issued
- 2018
- Identifier
- CFE0007002, ucf:52053
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007002
- Title
- STRUCTURAL CHARACTERIZATION OF SPUTTER-DEPOSITED SS304+XAL (X = 0, 4, 7 AND 10 WT.%) COATINGS AND MECHANICALLY MILLED TI, ZR AND HF POWDERS.
- Creator
-
Seelam, Uma Maheswara, Suryanarayana, Challapalli, University of Central Florida
- Abstract / Description
-
Study of the metastable phases obtained by non-equilibrium processing techniques has come a long way during the past five decades. New metastable phases have often given new perspectives to the research on synthesis of novel materials systems. Metastable materials produced by two non-equilibrium processing methods were studied for this dissertation- 304-type austenitic stainless steel (SS304 or Fe-18Cr-8Ni)+aluminum coatings produced by plasma enhanced magnetron sputter-deposition (PEMS) and...
Show moreStudy of the metastable phases obtained by non-equilibrium processing techniques has come a long way during the past five decades. New metastable phases have often given new perspectives to the research on synthesis of novel materials systems. Metastable materials produced by two non-equilibrium processing methods were studied for this dissertation- 304-type austenitic stainless steel (SS304 or Fe-18Cr-8Ni)+aluminum coatings produced by plasma enhanced magnetron sputter-deposition (PEMS) and nanocrystalline Ti, Zr and Hf powders processed by mechanical milling (MM). The objective of the study was to understand the crystallographic and microstructural aspects of these materials. Four SS304+Al coatings with a nominal Al percentages of 0, 4, 7 and 10 wt.% in the coatings were deposited on an SS304 substrate by PEMS using SS304 and Al targets. The as-deposited coatings were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and three-dimensional atom probe microscopy (3DAP). Surface morphology and chemical analysis were studied by SEM. Phase identification was carried out by XRD and TEM. The microstructural features of all the coatings, as observed in the TEM, consisted of columnar grains with the columnar grain width (a measure of grain size) increasing with an increase in the Al content. The coatings had grains with average grain sizes of about 100, 290, 320 and 980 nm, respectively for 0, 4, 7 and 10 wt.% Al. The observed grain structures and increase in grain size were related to substrate temperature during deposition. XRD results indicated that the Al-free coating consisted of the non-equilibrium ferrite and sigma phases. In the 4Al, 7Al and 10Al coatings, equilibrium ferrite and B2 phases were observed but no sigma phase was found. In 10Al coating, we were able to demonstrate experimentally using 3DAP studies that NiAl phase formation is preferred over the FeAl phase at nano scale. During mechanical milling of the hexagonal close packed (HCP) metals Hf, Ti and Zr powders, unknown nanocrystalline phases with face centered cubic (FCC) structure were found. The FCC phases could be either allotropes of the respective metals or impurity stabilized phases. However, upon MM under high purity conditions, it was revealed that the FCC phases were impurity stabilized. The decrease in crystallite size down to nanometer levels, an increase in atomic volume, lattice strain, and possible contamination were the factors responsible for the transformation.
Show less - Date Issued
- 2010
- Identifier
- CFE0003161, ucf:48595
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003161