Current Search: Time Series Modeling (x)
View All Items
- Title
- Data-Driven Modeling and Optimization of Building Energy Consumption.
- Creator
-
Grover, Divas, Pourmohammadi Fallah, Yaser, Vosoughi, Azadeh, Zhou, Qun, University of Central Florida
- Abstract / Description
-
Sustainability and reducing energy consumption are targets for building operations. The installation of smart sensors and Building Automation Systems (BAS) makes it possible to study facility operations under different circumstances. These technologies generate large amounts of data. That data can be scrapped and used for the analysis. In this thesis, we focus on the process of data-driven modeling and decision making from scraping the data to simulate the building and optimizing the...
Show moreSustainability and reducing energy consumption are targets for building operations. The installation of smart sensors and Building Automation Systems (BAS) makes it possible to study facility operations under different circumstances. These technologies generate large amounts of data. That data can be scrapped and used for the analysis. In this thesis, we focus on the process of data-driven modeling and decision making from scraping the data to simulate the building and optimizing the operation. The City of Orlando has similar goals of sustainability and reduction of energy consumption so, they provided us access to their BAS for the data and study the operation of its facilities. The data scraped from the City's BAS serves can be used to develop statistical/machine learning methods for decision making. We selected a mid-size pilot building to apply these techniques. The process begins with the collection of data from BAS. An Application Programming Interface (API) is developed to login to the servers and scrape data for all data points and store it on the local machine. Then data is cleaned to analyze and model. The dataset contains various data points ranging from indoor and outdoor temperature to fan speed inside the Air Handling Unit (AHU) which are operated by Variable Frequency Drive (VFD). This whole dataset is a time series and is handled accordingly. The cleaned dataset is analyzed to find different patterns and investigate relations between different data points. The analysis helps us in choosing parameters for models that are developed in the next step. Different statistical models are developed to simulate building and equipment behavior. Finally, the models along with the data are used to optimize the building Operation with the equipment constraints to make decisions for building operation which leads to a reduction in energy consumption while maintaining temperature and pressure inside the building.
Show less - Date Issued
- 2019
- Identifier
- CFE0007810, ucf:52335
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007810
- Title
- INVESTIGATION OF DAMAGE DETECTION METHODOLOGIES FOR STRUCTURAL HEALTH MONITORING.
- Creator
-
Gul, Mustafa, Catbas, F. Necati, University of Central Florida
- Abstract / Description
-
Structural Health Monitoring (SHM) is employed to track and evaluate damage and deterioration during regular operation as well as after extreme events for aerospace, mechanical and civil structures. A complete SHM system incorporates performance metrics, sensing, signal processing, data analysis, transmission and management for decision-making purposes. Damage detection in the context of SHM can be successful by employing a collection of robust and practical damage detection methodologies...
Show moreStructural Health Monitoring (SHM) is employed to track and evaluate damage and deterioration during regular operation as well as after extreme events for aerospace, mechanical and civil structures. A complete SHM system incorporates performance metrics, sensing, signal processing, data analysis, transmission and management for decision-making purposes. Damage detection in the context of SHM can be successful by employing a collection of robust and practical damage detection methodologies that can be used to identify, locate and quantify damage or, in general terms, changes in observable behavior. In this study, different damage detection methods are investigated for global condition assessment of structures. First, different parametric and non-parametric approaches are re-visited and further improved for damage detection using vibration data. Modal flexibility, modal curvature and un-scaled flexibility based on the dynamic properties that are obtained using Complex Mode Indicator Function (CMIF) are used as parametric damage features. Second, statistical pattern recognition approaches using time series modeling in conjunction with outlier detection are investigated as a non-parametric damage detection technique. Third, a novel methodology using ARX models (Auto-Regressive models with eXogenous output) is proposed for damage identification. By using this new methodology, it is shown that damage can be detected, located and quantified without the need of external loading information. Next, laboratory studies are conducted on different test structures with a number of different damage scenarios for the evaluation of the techniques in a comparative fashion. Finally, application of the methodologies to real life data is also presented along with the capabilities and limitations of each approach in light of analysis results of the laboratory and real life data.
Show less - Date Issued
- 2009
- Identifier
- CFE0002830, ucf:48069
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002830
- Title
- SPATIO-TEMPORAL ANALYSES FOR PREDICTION OF TRAFFIC FLOW, SPEED AND OCCUPANCY ON I-4.
- Creator
-
Chilakamarri Venkata, Srinivasa Ravi Chandra, Al-Deek, Haitham, University of Central Florida
- Abstract / Description
-
Traffic data prediction is a critical aspect of Advanced Traffic Management System (ATMS). The utility of the traffic data is in providing information on the evolution of traffic process that can be passed on to the various users (commuters, Regional Traffic Management Centers (RTMCs), Department of Transportation (DoT),
etc) for user-specific objectives. This information can be extracted from the data collected by various traffic sensors. Loop detectors collect traffic data in the form of...
Show moreTraffic data prediction is a critical aspect of Advanced Traffic Management System (ATMS). The utility of the traffic data is in providing information on the evolution of traffic process that can be passed on to the various users (commuters, Regional Traffic Management Centers (RTMCs), Department of Transportation (DoT), etc) for user-specific objectives. This information can be extracted from the data collected by various traffic sensors. Loop detectors collect traffic data in the form of flow, occupancy, and speed throughout the nation. Freeway traffic data from I-4 loop detectors has been collected and stored in a data warehouse called the Central Florida Data Warehouse (CFDWTM) by the University of Central Florida for the periods between 1993 1994 and 2000 - 2003. This data is raw, in the form of time stamped 30-second aggregated data collected from about 69 stations over a 36 mile stretch on I-4 from Lake Mary in the east to Disney-World in the west. This data has to be processed to extract information that can be disseminated to various users. Usually, most statistical procedures assume that each individual data point in the sample is independent of other data points. This is not true to traffic data as they are correlated across space and time. Therefore, the concept of time sequence and the layout of data collection devices in space, introduces autocorrelations in a single variable and cross correlations across multiple variables. Significant autocorrelations prove that past values of a variable can be used to predict future values of the same variable. Furthermore, significant cross-correlations between variables prove that past values of one variable can be used to predict future values of another variable. The traditional techniques in traffic prediction use univariate time series models that account for autocorrelations but not cross-correlations. These models have neglected the cross correlations between variables that are present in freeway traffic data, due to the way the data are collected. There is a need for statistical techniques that incorporate the effect of these multivariate cross-correlations to predict future values of traffic data. The emphasis in this dissertation is on the multivariate prediction of traffic variables. Unlike traditional statistical techniques that have relied on univariate models, this dissertation explored the cross-correlation between multivariate traffic variables and variables collected across adjoining spatial locations (such as loop detector stations). The analysis in this dissertation proved that there were significant cross correlations among different traffic variables collected across very close locations at different time scales. The nature of cross-correlations showed that there was feedback among the variables, and therefore past values can be used to predict future values. Multivariate time series analysis is appropriate for modeling the effect of different variables on each other. In the past, upstream data has been accounted for in time series analysis. However, these did not account for feedback effects. Vector Auto Regressive (VAR) models are more appropriate for such data. Although VAR models have been applied to forecast economic time series models, they have not been used to model freeway data. Vector Auto Regressive models were estimated for speeds and volumes at a sample of two locations, using 5-minute data. Different specifications were fit estimation of speeds from surrounding speeds; estimation of volumes from surrounding volumes; estimation of speeds from volumes and occupancies from the same location; estimation of speeds from volumes from surrounding locations (and vice versa). These specifications were compared to univariate models for the respective variables at three levels of data aggregation (5-minutes, 10 minutes, and 15 minutes) in this dissertation. For data aggregation levels of <15 minutes, the VAR models outperform the univariate models. At data aggregation level of 15 minutes, VAR models did not outperform univariate models. Since VAR models were used for all traffic variables reported by the loop detectors, this made the application of VAR a true multivariate procedure for dynamic prediction of the multivariate traffic variables flow, speed and occupancy. Also, VAR models are generally deemed more complex than univariate models due to the estimation of multiple covariance matrices. However, a VAR model for k variables must be compared to k univariate models and VAR models compare well with AutoRegressive Integrated Moving Average (ARIMA) models. The added complexity helps model the effect of upstream and downstream variables on the future values of the response variable. This could be useful for ATMS situations, where the effect of traffic redistribution and redirection is not known beforehand with prediction models. The VAR models were tested against more traditional models and their performances were compared against each other under different traffic conditions. These models significantly enhance the understanding of the freeway traffic processes and phenomena as well as identifying potential knowledge relating to traffic prediction. Further refinements in the models can result in better improvements for forecasts under multiple conditions.
Show less - Date Issued
- 2009
- Identifier
- CFE0002593, ucf:48276
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002593
- Title
- STRUCTURAL HEALTH MONITORING FOR DAMAGE DETECTION USING WIRED AND WIRELESS SENSOR CLUSTERS.
- Creator
-
Terrell, Thomas, Catbas, Necati, University of Central Florida
- Abstract / Description
-
Sensing and analysis of a structure for the purpose of detecting, tracking, and evaluating damage and deterioration, during both regular operation and extreme events, is referred to as Structural Health Monitoring (SHM). SHM is a multi-disciplinary field, with a complete system incorporating sensing technology, hardware, signal processing, networking, data analysis, and management for interpretation and decision making. However, many of these processes and subsequent integration into a...
Show moreSensing and analysis of a structure for the purpose of detecting, tracking, and evaluating damage and deterioration, during both regular operation and extreme events, is referred to as Structural Health Monitoring (SHM). SHM is a multi-disciplinary field, with a complete system incorporating sensing technology, hardware, signal processing, networking, data analysis, and management for interpretation and decision making. However, many of these processes and subsequent integration into a practical SHM framework are in need of development. In this study, various components of an SHM system will be investigated. A particular focus is paid to the investigation of a previously developed damage detection methodology for global condition assessment of a laboratory structure with a decking system. First, a review of some of the current SHM applications, which relate to a current UCF Structures SHM study monitoring a full-scale movable bridge, will be presented in conjunction with a summary of the critical components for that project. Studies for structural condition assessment of a 4-span bridge-type steel structure using the SHM data collected from laboratory based experiments will then be presented. For this purpose, a time series analysis method using ARX models (Auto-Regressive models with eXogeneous input) for damage detection with free response vibration data will be expanded upon using both wired and wireless acceleration data. Analysis using wireless accelerometers will implement a sensor roaming technique to maintain a dense sensor field, yet require fewer sensors. Using both data types, this ARX based time series analysis method was shown to be effective for damage detection and localization for this relatively complex laboratory structure. Finally, application of the proposed methodologies on a real-life structure will be discussed, along with conclusions and recommendations for future work.
Show less - Date Issued
- 2011
- Identifier
- CFE0003694, ucf:48837
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003694
- Title
- Risk Management in Reservoir Operations in the Context of Undefined Competitive Consumption.
- Creator
-
Salami, Yunus, Nnadi, Fidelia, Wang, Dingbao, Chopra, Manoj, Rowney, Alexander, Divo, Eduardo, University of Central Florida
- Abstract / Description
-
Dams and reservoirs with multiple purposes require effective management to fully realize their purposes and maximize efficiency. For instance, a reservoir intended mainly for the purposes of flood control and hydropower generation may result in a system with primary objectives that conflict with each other. This is because higher hydraulic heads are required to achieve the hydropower generation objective while relatively lower reservoir levels are required to fulfill flood control objectives....
Show moreDams and reservoirs with multiple purposes require effective management to fully realize their purposes and maximize efficiency. For instance, a reservoir intended mainly for the purposes of flood control and hydropower generation may result in a system with primary objectives that conflict with each other. This is because higher hydraulic heads are required to achieve the hydropower generation objective while relatively lower reservoir levels are required to fulfill flood control objectives. Protracted imbalances between these two could increase the susceptibility of the system to risks of water shortage or flood, depending on inflow volumes and operational policy effectiveness. The magnitudes of these risks can become even more pronounced when upstream use of the river is unregulated and uncoordinated so that upstream consumptions and releases are arbitrary. As a result, safe operational practices and risk management alternatives must be structured after an improved understanding of historical and anticipated inflows, actual and speculative upstream uses, and the overall hydrology of catchments upstream of the reservoir. One of such systems with an almost yearly occurrence of floods and shortages due to both natural and anthropogenic factors is the dual reservoir system of Kainji and Jebba in Nigeria. To analyze and manage these risks, a methodology that combines a stochastic and deterministic approach was employed. Using methods outlined by Box and Jenkins (1976), autoregressive integrated moving average (ARIMA) models were developed for forecasting Niger river inflows at Kainji reservoir based on twenty-seven-year-long historical inflow data (1970-1996). These were then validated using seven-year inflow records (1997-2003). The model with the best correlation was a seasonal multiplicative ARIMA (2,1,1)x(2,1,2)12 model. Supplementary validation of this model was done with discharge rating curves developed for the inlet of the reservoir using in situ inflows and satellite altimetry data. By comparing net inflow volumes with storage deficit, flood and shortage risk factors at the reservoir were determined based on (a) actual inflows, (b) forecasted inflows (up to 2015), and (c) simulated scenarios depicting undefined competitive upstream consumption. Calculated high-risk years matched actual flood years again suggesting the reliability of the model. Monte Carlo simulations were then used to prescribe safe outflows and storage allocations in order to reduce futuristic risk factors. The theoretical safety levels achieved indicated risk factors below threshold values and showed that this methodology is a powerful tool for estimating and managing flood and shortage risks in reservoirs with undefined competitive upstream consumption.
Show less - Date Issued
- 2012
- Identifier
- CFE0004593, ucf:49193
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004593
- Title
- Constructing and Validating an Integrative Economic Model of Health Care Systems and Health Care Markets: A Comparative Analysis of OECD Countries.
- Creator
-
Helligso, Jesse, Wan, Thomas, Liu, Albert Xinliang, King, Christian, Hamann, Kerstin, University of Central Florida
- Abstract / Description
-
This dissertation argues that there are three basic types of health care systems used in industrial nations: free market (private insurance and provision), universal (public insurance and private provision), and socialized (public insurance and provision). It examines the role of market forces (supply and demand) within the health care systems and their effects on health outcomes by constructing an integrative model of health care markets and policies that is lacking within the scientific and...
Show moreThis dissertation argues that there are three basic types of health care systems used in industrial nations: free market (private insurance and provision), universal (public insurance and private provision), and socialized (public insurance and provision). It examines the role of market forces (supply and demand) within the health care systems and their effects on health outcomes by constructing an integrative model of health care markets and policies that is lacking within the scientific and academic literature. The results show that, free market systems have decreased access to care, good quality of care, and are economically inefficient resulting in 2.7 years of life expectancy lost and wasted expenditures (expenditures that do not increase life expectancy) of $3474 per capita ($1.12 trillion per year in the U.S.). Socialized systems are the most economically efficient systems but have decreased access to care compared to universal systems, increased access to care compared to free market systems and have the lowest quality of care of all three systems resulting in 3 months of life expectancy lost per capita and a saving of $335 per capita. Universal systems perform better than either of the other 2 systems based on quality and access to care. The models show that health insurance is a Giffen Good; a good that defies the law of demand. This study is the first fully demonstrated case of a Giffen good. This investigation shows how the theoretically informed integrative model behaves as predicted and influences health outcomes contingent upon the system type. To test and substantiate this integrative model, regression analysis, Time-Series-Cross-Section analysis, and structural equation modeling were performed using longitudinal data provided and standardized by the Organization for Economic Cooperation and Development (OECD). The results demonstrate that universal health care systems are superior to the other two systems.
Show less - Date Issued
- 2018
- Identifier
- CFE0007335, ucf:52114
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007335