Current Search: Toll plaza (x)
View All Items
- Title
- EVALUATION OF THE POTENTIAL BENEFITS TO TRAFFIC OPERATIONS AT A TOLL PLAZAWITH EXPRESS ETC LANES.
- Creator
-
Gordin, Eric Anthony, Al-Deek, Haitham M., University of Central Florida
- Abstract / Description
-
The effectiveness of modifying a conventional toll plaza for implementation of an open road tolling concept with express ETC lanes was evaluated in this thesis. Speed controlled dedicated ETC lanes were replaced with express ETC lanes at the Orlando-Orange County Expressway Authority (OOCEA) University Mainline Toll Plaza. This evaluation was accomplished by utilizing collected field data and simulated scenarios using Toll Plaza SIMulation (TPSIM) software developed by the University of...
Show moreThe effectiveness of modifying a conventional toll plaza for implementation of an open road tolling concept with express ETC lanes was evaluated in this thesis. Speed controlled dedicated ETC lanes were replaced with express ETC lanes at the Orlando-Orange County Expressway Authority (OOCEA) University Mainline Toll Plaza. This evaluation was accomplished by utilizing collected field data and simulated scenarios using Toll Plaza SIMulation (TPSIM) software developed by the University of Central Florida. The speed controlled dedicated ETC lanes were located within toll lanes (contained within a toll plaza canopy) with widths ranging between 10 to 14 ft. These types of lanes required all vehicles to reduce their speed from the highway speed to 35 mph. Express ETC lanes (sometimes referenced as open road tolling or non-stop tolling) allow vehicles to pass through the plaza at high speeds. Open road tolling is a concept that employs high speed toll lanes.A before and after study of the University toll plaza was conducted. Benefits in the form of reduced delays and increased capacities were observed when making the comparison between the before and after studies. Since we expect the capacity of an express ETC lane to be greater than the dedicated ETC lanes (due to an increase in free-flow speed), further analysis using equations and car-following theory proved that if the ETC speed was increased, then the capacity would increase as well. Using equations derived from the Highway Capacity Manual (HCM) and car-following theory, the capacity was increased from 2016 to 2314 vph when the ETC speed increased from 31 mph to 65 mph. This indicated an increase in capacity of 14.8 percent (based on the conversion from dedicated to express ETC lanes). The field data was also used as input for TPSIM (a computer simulation model) in order to perform a sensitivity analysis of the express ETC lanes by varying the type of ETC lane, number of approach lanes, and plaza configurations (the addition of an ACM lane) between scenarios. Results that were observed during the after study were verified using the TPSIM scenarios. Reductions in delays for the entire plaza were observed using the TPSIM model when making similar improvements to the plaza as in the after study.The changes made to the University Mainline Toll Plaza after construction was completed resulted in benefits by reducing delays and increasing the capacity of the toll plaza (by converting dedicated ETC lanes to express ETC lanes and adding an additional A/ETC lane per direction). These benefits were measured using field data and confirmed when performing the TPSIM scenarios. A customer's travel time along the toll facility will be reduced by using the express ETC lanes (since they are not required to decelerate at the toll plaza). In addition, weaving maneuvers downstream of the plaza are no longer required by customers using the express ETC lanes due to the location of the downstream travel lanes in relation to the express ETC lanes. These benefits may have led to changes in the number and percentage of ETC users in each of the toll lanes. Changes in ETC usage in the conventional mixed-use lanes directly impacted the throughput and delays for each of these lanes, since ETC equipped vehicles have a service time of zero seconds. In addition to the operational benefits, other possible benefits for express ETC lanes were identified and recommended for further evaluation and research. The re-distribution of customers at the plaza due to the implementation of open road tolling, in the form of express ETC lanes, was a great benefit to the overall traffic operations for the University Mainline Toll Plaza in Orlando, Florida.
Show less - Date Issued
- 2004
- Identifier
- CFE0000057, ucf:46072
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000057
- Title
- DEVELOPING MICROSCOPIC TOLL PLAZA MODEL USING PARAMICS.
- Creator
-
Nezamuddin, Nezamuddin, Al-Deek, Haitham, University of Central Florida
- Abstract / Description
-
Simulation modeling is the most cost-effective way of studying real life transportation problems, either existing or anticipated, without disturbing the balance of the transportation system. There is a vast suite of simulation models available in market, ready to choose from macroscopic, mesoscopic, or microscopic in nature, to study different transportation system elements like freeways, highways, signalized and un-signalized intersections. However, most of these network simulation models,...
Show moreSimulation modeling is the most cost-effective way of studying real life transportation problems, either existing or anticipated, without disturbing the balance of the transportation system. There is a vast suite of simulation models available in market, ready to choose from macroscopic, mesoscopic, or microscopic in nature, to study different transportation system elements like freeways, highways, signalized and un-signalized intersections. However, most of these network simulation models, like PARAMICS, VISSIM, CORSIM etc, do not come readily available with built in toll plaza models. On the other hand, many researchers have independently developed toll plaza models, which can only model an isolated toll plaza without the road network. These toll plaza models, which are based on queuing theory (and some are macroscopic in nature), do not take into account headway, gap acceptance, or inter-vehicle interaction to follow a lead car or to perform lane changing maneuvers. Vehicles just upstream of the toll plaza are assigned to one of the toll lanes, solely based on the payment method (manual, automatic coin machine, or electronic toll collection) and queue lengths at the toll lanes. For instance, if a vehicle is traveling in the leftmost lane and the rightmost toll lane has the shortest queue length, then the queuing model will assign this vehicle to the rightmost lane, and the vehicle will do unrealistic maneuvering to reach to the assigned toll lane instantly. Microscopic network simulation models simulate the vehicular movements based on lane-changing and car-following rules. If such a model could be customized to serve the purpose of the toll plaza simulation, it will simulate the vehicular movements just upstream and downstream of the toll plaza more realistically. Being a network simulation model, it can also model the road network integrated with the plaza, which can be used to study the entire toll road corridor, unlike the isolated toll plaza models. In addition to being a microscopic network simulation model, PARAMICS has many simulation tools, which can be customized to develop a network model with enhanced toll plaza simulation capabilities. PARAMICS also provides the flexibility of using an aerial picture of the toll plaza and upstream/downstream sections of the road as overlay, to ensure that the toll plaza model operates under similar geometric conditions as the real plaza. Using an overlay, exact details of the transition area can be fed into the model. In real life, there is a smooth transition (in terms of the number of lanes and the width of the roadway) from the uniform free-flowing section of the roadway to the toll plaza. Detailed representation of the transition area, in terms of geometry and curb of the roadway along with the number of lanes, is essential for a realistic toll plaza simulation. This kind of detail is not available in a queuing model. As the roadway approaches the toll plaza, it contains more lanes compared to its upstream segments. However, in a simulation model vehicles have a tendency to maintain the same old lanes, and the newly added lanes remain unoccupied by the vehicles. Next-lane Allocation feature in PARAMICS can be used to map upstream lanes onto downstream lanes, preventing this unrealistic behavior from occurring in the simulation model. It tells the vehicles in a particular upstream lane to choose from one or more of the downstream lanes as per the settings. Next-lane allocation can be used in such a manner that all the downstream lanes are utilized. PARAMICS has several other tools such as Restrictions Manager, Vehicle Type Manager, Lane-choices Rules, HOV Lanes, and Vehicle Actuated (VA) Signals which can be used in combination to build a toll plaza model. A microscopic 'Holland East Plaza - SR408' network model has been developed using PARAMICS V5.1. This model contains the plaza and the downstream section of SR 408 Westbound till I-4 interchange in downtown Orlando. This model has been successfully calibrated and validated for the mainline toll plaza and ramp volumes for year 2004. Several hypothetical incident scenarios were simulated to study an entire corridor from the toll plaza to Interstate 4. It was found that the volumes on I-4 off-ramp and SR 408 mainline were affected the most under incident conditions. Volumes for other ramps were not affected in the same proportions. An incident on mainline toll road affected the throughput of the plaza significantly, but the same is not true for an incident on an off-ramp. Travel times to I-4 off-ramps and SR 408 thru lanes were the most sensitive in each of the incident scenarios. In case of the elimination of tolls during the hurricane evacuation, the throughput of the plaza increased significantly. Travel times for the vehicles coming through the plaza and going to different destinations decreased significantly, while it increased for vehicles using on-ramps, because of their inability to merge in the mainline traffic due to the increased toll road volume. The developed model in this thesis has the potential of transportation network wide applications with multiple toll plazas.
Show less - Date Issued
- 2006
- Identifier
- CFE0001183, ucf:46851
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001183
- Title
- THE CALIBRATION AND VERIFICATION OF SIMULATION MODELS FOR TOLL PLAZAS.
- Creator
-
Russo, Christopher, Radwan, Essam, University of Central Florida
- Abstract / Description
-
A great deal of research has been conducted on Central Florida toll roads to better understand the characteristics of the tolling operation. In this thesis, the development and calibration of a toll plaza simulation models will be analyzed using two simulation programs varying mostly in their modeling theory. The two models utilized are, SHAKER, a deterministic queuing model for vehicles utilizing toll collection facilities, and VISSIM, a globally popular stochastic simulation software. The...
Show moreA great deal of research has been conducted on Central Florida toll roads to better understand the characteristics of the tolling operation. In this thesis, the development and calibration of a toll plaza simulation models will be analyzed using two simulation programs varying mostly in their modeling theory. The two models utilized are, SHAKER, a deterministic queuing model for vehicles utilizing toll collection facilities, and VISSIM, a globally popular stochastic simulation software. The benefits of simulation models leads to the purpose of this thesis, which is to examine the effectiveness of two toll modeling programs that are similar in purpose but vary in approach and methodology. Both SHAKER and VISSIM toll plaza models have the potential to work as a tool that can estimate the maximum throughput and capacity of toll plazas. Major operational benefits resulting from developing these models are to simulate and evaluate how traffic conditions will change when demand increases, when and if queues increase when a lane is closed due to maintenance or construction, the impact of constructing additional lanes, or determining whether or not the best lane type configuration is currently implemented. To effectively calibrate any model available site data must be used to compare simulation results to for model validity. In an effort to correctly calibrate the SHAKER toll plaza tool and VISSIM model, an extensive field collection procedure was conducted at four Florida Turnpike operated toll facilities located in Central Florida. Each site differed from the others in terms of number of lanes, lane configuration, toll base fee, highway location, traffic demand, and vehicle percentage. The sites chosen for data collection were: the Lake Jesup Mainline Plaza along the Seminole Expressway (SR-417), the Beachline West Expressway Toll Plaza along the SR-528, the Daniel Webster Western Beltway Plaza along SR-429, and the Leesburg Toll Plaza along the Florida Turnpike Mainline SR-91. Upon completion of calibration of the two simulation models it is determined that each of the two software are successful in modeling toll plaza capacity and queuing. As expected, each simulation model does possess benefits over the other in terms of set up time, analysis reporting time, and practicality of results. The SHAKER model setup takes mere seconds in order to create a network and input vehicle, another few seconds to calibrate driving parameters, and roughly 10 additional seconds to report analysis. Conversely, setting up the VISSIM model, even for the most experienced user, can take several hours and the report analysis time can take several more hours as it is dependant on the number of required simulation runs and complexity of the network. VISSIM is most beneficial by the fact that its modeling allows for driver variability while SHAKER assumes equilibrium amongst lane choice and queuing. This creates a more realistic condition to observed traffic patterns. Even though differences are prevalent, it is important that in each simulation model the capacity is accurately simulated and each can be used to benefit operational situations related to toll plaza traffic conditions.
Show less - Date Issued
- 2008
- Identifier
- CFE0002376, ucf:47821
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002376
- Title
- DEVELOPMENT OF AN ARTIFICIAL NEURAL NETWORKS MODEL TO ESTIMATE DELAY USING TOLL PLAZA TRANSACTION DATA.
- Creator
-
Muppidi, Aparna, Al-Deek, Haitham, University of Central Florida
- Abstract / Description
-
In spite of the most up-to-date investigation of the relevant techniques to analyze the traffic characteristics and traffic operations at a toll plaza, there has not been any note worthy explorations evaluating delay from toll transaction data and using Artificial Neural Networks (ANN) at a toll plaza. This thesis lays an emphasis on the application of ANN techniques to estimate the total vehicular delay according to the lane type at a toll plaza. This is done to avoid the laborious task of...
Show moreIn spite of the most up-to-date investigation of the relevant techniques to analyze the traffic characteristics and traffic operations at a toll plaza, there has not been any note worthy explorations evaluating delay from toll transaction data and using Artificial Neural Networks (ANN) at a toll plaza. This thesis lays an emphasis on the application of ANN techniques to estimate the total vehicular delay according to the lane type at a toll plaza. This is done to avoid the laborious task of extracting data from the video recordings at a toll plaza. Based on the lane type a general methodology was developed to estimate the total vehicular delay at a toll plaza using ANN. Since there is zero delay in an Electronic Toll Collection (ETC) lane, ANN models were developed for estimating the total vehicular delay in a manual lane and automatic coin machine lane. Therefore, there are two ANN models developed in this thesis. These two ANN models were trained with three hours of data and validated with one hour of data from AM and PM peak data. The two ANN models were built with the dependent and independent variables. The dependent variables in the two models were the total vehicular delay for both the manual and automatic coin machine lane. The independent variables are those, which influence delay. A correlation analysis was performed to see if there exists any strong relationship between the dependent (outputs) and independent variables (inputs). These inputs and outputs are fed into the ANN models. The MATLABTB code was written to run the two ANN models. ANN predictions were good at estimating delay in manual lane, and delay in automatic coin machine lane.
Show less - Date Issued
- 2005
- Identifier
- CFE0000334, ucf:46298
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000334
- Title
- Evaluation of Real World Toll Plazas Using Driving Simulation.
- Creator
-
Carroll, Kali, Abdel-Aty, Mohamed, Lee, JaeYoung, Eluru, Naveen, University of Central Florida
- Abstract / Description
-
Toll plazas are becoming an essential part of the highway system, especially within the state of Florida. Many crashes reported on highways occur at toll plazas. A primary reason for many vehicle collisions happening at these facilities is the fact that each toll plaza agency has different design, signage and marking criteria. This, in turn, causes driver confusion and possible last minute weaving maneuvers. Even though the varying design of toll plazas is a clear highway safety factor,...
Show moreToll plazas are becoming an essential part of the highway system, especially within the state of Florida. Many crashes reported on highways occur at toll plazas. A primary reason for many vehicle collisions happening at these facilities is the fact that each toll plaza agency has different design, signage and marking criteria. This, in turn, causes driver confusion and possible last minute weaving maneuvers. Even though the varying design of toll plazas is a clear highway safety factor, research in the field is very limited but expanding. This study focuses on one toll plaza, in particular the Dean Mainline Toll Plaza, located in Orlando, Florida. The toll plaza is located directly between two roads that are in close proximity of each other. Because of this, the toll plaza is very close to the on- and off- ramps, which can be even more confusing and stressful for a driver entering or leaving the highway. The purpose of this study is to evaluate the safety and efficiency of the Dean Mainline Toll Plaza in order to make recommendations to improve or maintain the current toll plaza design, as well as potentially contribute to a nationally set design standard for toll plazas. Using the NADS miniSimTM Simulator, 72 subjects were recruited, and each subject was asked to drive 3 scenarios that were randomly selected from a pool of 24 scenarios. The following factors were changed in order to study the driver's behavior: signage and their location, pavement markings, distances between the toll plaza and ramps, and traffic conditions. All of these factors were altered and observed on five of the eight possible routes than can be taken through the toll plaza. The subjects were asked to complete questionnaires before and after all of the scenarios, as well as in between each driving scenario. These questionnaires included demographic characteristics, such as age, education, income, E-PASS ownership, etc. The data that were collected by the driving simulator and questionnaires were analyzed by ANOVA and multinomial logistic regression models. A positive relationship was found between non-urgent lane changing and the current real-world sign conditions prior to the toll plaza. Relationships were also found between the subjects' speed in various locations and signage before the toll plaza and segment length after the toll plaza. Along with specified recommendations for future research in toll plaza safety, recommendations for the Dean Mainline Toll Plaza include maintaining the current signs and pavement markings, as they were found to be beneficial in drivers performing safe lane changing maneuvers.
Show less - Date Issued
- 2016
- Identifier
- CFE0006085, ucf:50960
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006085
- Title
- WORK ZONE EFFECTS ON PERFORMANCE OF A TOLL PLAZA.
- Creator
-
liu, jingyu, Radwan, Essam, University of Central Florida
- Abstract / Description
-
No-lane closure workzone is typical during the construction of open road tolling lanes of a toll plaza. The influence of no-lane closure on toll plazas' performance is unknown because very few studies have been conducted to address this topic. The open road tolling (ORT) has become the new trend of operating an efficient toll plaza. So, the upgrading of a toll plaza from gated E-pass to open road E-pass has become common. The better the toll plaza authority knows about the influence of...
Show moreNo-lane closure workzone is typical during the construction of open road tolling lanes of a toll plaza. The influence of no-lane closure on toll plazas' performance is unknown because very few studies have been conducted to address this topic. The open road tolling (ORT) has become the new trend of operating an efficient toll plaza. So, the upgrading of a toll plaza from gated E-pass to open road E-pass has become common. The better the toll plaza authority knows about the influence of this construction and congestion effects, the better it can serve the costumers. This project mainly deals with the effects of no-lane closure workzone on the toll plaza performance, and with the collected data, a model was developed predicting 15 minutes throughput and queue length. To better study the workzone impact on toll plaza performance, three sites with different characteristics were selected. They are Lake Jesup Mainline Plaza along the Seminole Expressway (SR-417), the Beachline West Expressway Toll Plaza along the SR-528 and Conway toll plaza along the Holland East-West Expressway (SR-408) in Orlando area of Central Florida. Data preparation includes demand, throughput, processing rates, and queue lengths of different toll categories. Data was collected during peak period for before and during the no-lane closure construction (phase 1) at SR-528 and Lake Jesup toll plaza at SR-417, and middle lane construction (phase 2) and after opening ORT lanes (phase 3) at Conway toll plaza at SR-408.Comparisons were conducted between non-construction stage and construction stage for non-lane closure workzone effects study using data from 417 and 528, and comparisons between middle-lane-construction and complete of construction stage for ORT impact study using data from 408. Analysis results showed that when the toll plaza is operating at or close to its capacity, the no-lane closure workzone can have a negative impact on its performance. But when the toll plaza's demand is lower than the capacity, the no-lane closure workzone has no impact at the toll plaza's performance. And the ORT lanes have a positive influence on the capacity and throughput of the toll plaza. After the impact of no-lane closure workzone on toll plaza has been analyzed, all the data from three toll plazas are put together and a model is built using the variables of Demand/Capacity ratio, percentage of each category of vehicles, E-pass, Automatic or Manual, number of Manual lanes, workzone or no-workzone. Throughput and Queue length can be predicted by this model.
Show less - Date Issued
- 2009
- Identifier
- CFE0002951, ucf:47940
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002951
- Title
- TRAFFIC SAFETY ASSESSMENT OF DIFFERENT TOLL COLLECTION SYSTEMS ON EXPRESSWAYS USING MULTIPLE ANALYTICAL TECHNIQUES.
- Creator
-
Abuzwidah, Muamer, Abdel-Aty, Mohamed, Radwan, Essam, Uddin, Nizam, University of Central Florida
- Abstract / Description
-
Traffic safety has been considered one of the most important issues in the transportation field. Crashes have caused extensive human and economic losses. With the objective of reducing crash occurrence and alleviating crash injury severity, major efforts have been dedicated to reveal the hazardous factors that affect crash occurrence. With these consistent efforts, both fatalities and fatality rates from road traffic crashes in many countries have been steadily declining over the last ten...
Show moreTraffic safety has been considered one of the most important issues in the transportation field. Crashes have caused extensive human and economic losses. With the objective of reducing crash occurrence and alleviating crash injury severity, major efforts have been dedicated to reveal the hazardous factors that affect crash occurrence. With these consistent efforts, both fatalities and fatality rates from road traffic crashes in many countries have been steadily declining over the last ten years. Nevertheless, according to the World Health Organization, the world still lost 1.24 million lives from road traffic crashes in the year of 2013. And without action, traffic crashes on the roads network are predicted to result in deaths of around 1.9 million people, and up to 50 million more people suffer non-fatal injuries annually, with many incurring a disability as a result of their injury by the year 2020. To meet the transportation needs, the use of expressways (toll roads) has risen dramatically in many countries in the past decade. In fact, freeways and expressways are considered an important part of any successful transportation system. These facilities carry the majority of daily trips on the transportation network. Although expressways offer high level of service, and are considered the safest among other types of roads, traditional toll collection systems may have both safety and operational challenges. The traditional toll plazas still experience many crashes, many of which are severe. Therefore, it becomes more important to evaluate the traffic safety impacts of using different tolling systems. The main focus of the research in this dissertation is to provide an up-to-date safety impact of using different toll collection systems, as well as providing safety guidelines for these facilities to promote safety and enhance mobility on expressways. In this study, an extensive data collection was conducted that included one hundred mainline toll plazas located on approximately 750 miles of expressways in Florida. Multiple sources of data available online maintained by Florida Department of Transportation were utilized to identify traffic, geometric and geographic characteristics of the locations as well as investigating and determination of the most complete and accurate data. Different methods of observational before-after and Cross-Sectional techniques were used to evaluate the safety effectiveness of applying different treatments on expressways. The Before-After method includes Na(&)#239;ve Before-After, Before-After with Comparison Group, and Before-After with Empirical Bayesian. A set of Safety Performance Functions (SPFs) which predict crash frequency as a function of explanatory variables were developed at the aggregate level using crash data and the corresponding exposure and risk factors. Results of the aggregate traffic safety analysis can be used to identify the hazardous locations (hot spots) such as traditional toll plazas, and also to predict crash frequency for untreated sites in the after period in the Before-After with EB method or derive Crash Modification Factors (CMF) for the treatment using the Cross-Sectional method. This type of analysis is usually used to improve geometric characteristics and mainly focus on discovering the risk factors that are related to the total crash frequency, specific crash type, and/or different crash severity levels. Both simple SPFs (with traffic volume only as an explanatory variable) and full SPFs (with traffic volume and additional explanatory variable(s)) were used to estimate the CMFs and only CMFs with lower standard error were recommended.The results of this study proved that safety effectiveness was significantly improved across all locations that were upgraded from Traditional Mainline Toll Plazas (TMTP) to the Hybrid Mainline Toll Plazas (HMTP) system. This treatment significantly reduced total, Fatal-and-Injury (F+I), and Rear-End crashes by 47, 46 and 65 percent, respectively. Moreover, this study examined the traffic safety impact of using different designs, and diverge-and-merge areas of the HMTP. This design combines either express Open Road Tolling (ORT) lanes on the mainline and separate traditional toll collection to the side (design-1), or traditional toll collection on the mainline and separate ORT lanes to the side (design-2). It was also proven that there is a significant difference between these designs, and there is an indication that design-1 is safer and the majority of crashes occurred at diverge-and-merge areas before and after these facilities. However, design-2 could be a good temporary design at locations that have low prepaid transponder (Electronic Toll Collection (ETC)) users. In other words, it is dependent upon the percentage of the ETC users. As this percentage increases, more traffic will need to diverge and merge; thus, this design becomes riskier. In addition, the results indicated significant relationships between the crash frequency and toll plaza types, annual average daily traffic, and drivers' age. The analysis showed that the conversion from TMTP to the All-Electronic Toll Collection (AETC) system resulted in an average reduction of 77, 76, and 67 percent for total, F+I, and Property Damage Only (PDO) crashes, respectively; for rear end and Lane Change Related (LCR) crashes the average reductions were 81 and 75 percent, respectively. The conversion from HMTP to AETC system enhanced traffic safety by reducing crashes by an average of 23, 29 and 19 percent for total, F+I, and PDO crashes; also, for rear end and LCR crashes, the average reductions were 15 and 21 percent, respectively. Based on these results, the use of AETC system changed toll plazas from the highest risk sections on Expressways to be similar to regular segments. Therefore, it can be concluded that the use of AETC system was proven to be an excellent solution to several traffic operations as well as environmental and economic problems. For those agencies that cannot adopt the HMTP and the AETC systems, improving traffic safety at traditional toll plazas should take a priority.This study also evaluates the safety effectiveness of the implementation of High-Occupancy Toll lanes (HOT Lanes) as well as adding roadway lighting to expressways. The results showed that there were no significant impact of the implementation of HOT lanes on the roadway segment as a whole (HOT and Regular Lanes combined). But there was a significant difference between the regular lanes and the HOT lanes at the same roadway segment; the crash count increased at the regular lanes and decreased at the HOT lanes. It was found that the total and F+I crashes were reduced at the HOT lanes by an average of 25 and 45 percent, respectively. This may be attributable to the fact that the HOT lanes became a highway within a highway. Moreover adding roadway lighting has significantly improved traffic safety on the expressways by reducing the night crashes by approximately 35 percent.Overall, the proposed analyses of the safety effectiveness of using different toll collection systems are useful in providing expressway authorities with detailed information on where countermeasures must be implemented. This study provided for the first time an up-to-date safety impact of using different toll collection systems, also developed safety guidelines for these systems which would be useful for practitioners and roadway users.
Show less - Date Issued
- 2014
- Identifier
- CFE0005751, ucf:50100
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005751
- Title
- Analysis of Driving Behavior at Expressway Toll Plazas using Driving Simulator.
- Creator
-
Saad, Moatz, Abdel-Aty, Mohamed, Eluru, Naveen, Lee, JaeYoung, University of Central Florida
- Abstract / Description
-
The objective of this study is to analyze the driving behavior at toll plazas by examining multiple scenarios using a driving simulator to study the effect of different options including different path decisions, various signs, arrow markings, traffic conditions, and extending auxiliary lanes before and after the toll plaza on the driving behavior. Also, this study focuses on investigating the effect of drivers' characteristics on the dangerous driving behavior (e.g. speed variation, sudden...
Show moreThe objective of this study is to analyze the driving behavior at toll plazas by examining multiple scenarios using a driving simulator to study the effect of different options including different path decisions, various signs, arrow markings, traffic conditions, and extending auxiliary lanes before and after the toll plaza on the driving behavior. Also, this study focuses on investigating the effect of drivers' characteristics on the dangerous driving behavior (e.g. speed variation, sudden lane change, drivers' confusion). Safety and efficiency are the fundamental goals that transportation engineering is always seeking for the design of highways. Transportation agencies have a crucial challenging task to accomplish traffic safety, particularly at the locations that have been identified as crash hotspots. In fact, toll plaza locations are one of the most critical and challenging areas that expressway agencies have to pay attention to because of the increasing traffic crashes over the past years near toll plazas.Drivers are required to make many decisions at expressway toll plazas which result in drivers' confusion, speed variation, and abrupt lane change maneuvers. These crucial decisions are mainly influenced by three reasons. First, the limited distance between toll plazas and the merging areas at the on-ramps before the toll plazas. In additional to the limited distance between toll plazas and the diverging areas after the toll plazas at the off-ramps. Second, it is also affected by the location and the configuration of signage and pavement markings. Third, drivers' decisions are affected by the different lane configurations and tolling systems that can cause drivers' confusion and stress. Nevertheless, limited studies have explored the factors that influence driving behavior and safety at toll plazas. There are three main systems of the toll plaza, the traditional mainline toll plaza (TMTP), the hybrid mainline toll plaza (HMTP), and the all-electronic toll collection (AETC). Recently, in order to improve the safety and the efficiency of the toll plazas, most of the traditional mainline toll plazas have been converted to the hybrid toll plazas or the all-electronic toll collection plazas. This study assessed driving behavior at a section, including a toll plaza on one of the main expressways in Central Florida. The toll plaza is located between a close on-ramp and a nearby off-ramp. Thus, these close distances have a significant effect on increasing driver's confusion and unexpected lane change before and after the toll plaza. Driving simulator experiments were used to study the driving behavior at, before and after the toll plaza. The details of the section and the plaza were accurately replicated in the simulator. In the driving simulator experiment, Seventy-two drivers with different age groups were participated. Subsequently, each driver performed three separate scenarios out of a total of twenty-four scenarios. Seven risk indicators were extracted from the driving simulator experiment data by using MATLAB software. These variables are average speed, standard deviation of speed, standard deviation of lane deviation, acceleration rate, standard deviation of acceleration (acceleration noise), deceleration rate, and standard deviation of deceleration (braking action variation). Moreover, various scenario variables were tested in the driving simulator including different paths, signage, pavement markings, traffic condition, and extending auxiliary lanes before and after the toll plaza. Divers' individual characteristics were collected from a questionnaire before the experiment. Also, drivers were filling a questionnaire after each scenario to check for simulator sickness or discomfort. Nine variables were extracted from the simulation questionnaire for representing individual characteristics including, age, gender, education level, annual income, crash experience, professional drivers, ETC-tag use, driving frequency, and novice international drivers. A series of mixed linear models with random effects to account for multiple observations from the same participant were developed to reveal the contributing factors that affect driving behavior at toll plazas. The results uncovered that all drivers who drove through the open road tolling (ORT) showed higher speed and lower speed variation, lane deviation, and acceleration noise than other drivers who navigate through the tollbooth. Also, the results revealed that providing adequate signage, and pavement markings are effective in reducing risky driving behavior at toll plazas. Drivers tend to drive with less lane deviation and acceleration noise before the toll plaza when installing arrow pavement markings. Adding dynamic message sign (DMS) at the on-ramp has a significant effect on reducing speed variation before the toll plaza. Likewise, removing the third overhead sign before the toll plaza has a considerable influence on reducing aggressive driving behavior before and after the toll plaza. This result may reflect drivers' desire to feel less confusion by excessive signs and markings. Third, extending auxiliary lanes with 660 feet (0.125 miles) before or after the toll plaza have an effect on increasing the average speed and reducing the lane deviation and the speed variation at and before the toll plaza. It also has an impact on increasing the acceleration noise and the braking action variation after the toll plaza. Finally, it was found that in congested conditions, participants drive with a lower speed variation and lane deviation before the toll plaza but with a higher acceleration noise after the toll plaza. On the other hand, understanding drivers' characteristics is particularly important for exploring their effect on risky driving behavior. Young drivers (18-25) and old drivers (older than 50 years) consistently showed a higher risk behavior than middle age drivers (35 to 50). Also, it was found that male drivers are riskier than female drivers at toll plazas. Drivers with high education level, drivers with high income, ETC-tag users, and drivers whose driving frequency is less than three trips per day are more cautious and tend to drive at a lower speed.
Show less - Date Issued
- 2016
- Identifier
- CFE0006492, ucf:51391
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006492
- Title
- Evaluation and Modeling of the Safety of Open Road Tolling System.
- Creator
-
Abuzwidah, Muamer, Abdel-Aty, Mohamed, Radwan, Ahmed, Uddin, Nizam, University of Central Florida
- Abstract / Description
-
The goal of this thesis is to examine the traffic safety impact of upgrading Toll Plazas (TP) to Open Road Tolling (ORT). The ORT could enhance safety but could also pose some traffic safety concerns at Toll plazas. Crashes from eight years were investigated by evaluating the crash data before and after the implementation of the ORT.The study was conducted by using two approaches: 1) a simple before and after study and with a comparison group; 2) a modeling effort to help understand the...
Show moreThe goal of this thesis is to examine the traffic safety impact of upgrading Toll Plazas (TP) to Open Road Tolling (ORT). The ORT could enhance safety but could also pose some traffic safety concerns at Toll plazas. Crashes from eight years were investigated by evaluating the crash data before and after the implementation of the ORT.The study was conducted by using two approaches: 1) a simple before and after study and with a comparison group; 2) a modeling effort to help understand the relationship between the crash frequency and several important factors and circumstances such as injury severity, collision types, average daily traffic (ADT) and Toll plaza characteristics. The study investigated 11 Toll plazas on State Roads 408, 417, 528 and 429 that have been changed to the ORT design. Several maps showing the Toll plazas and identifying the relevant crash locations were generated. Negative Binomial (NB), Log Linear model and two-way contingency table were examined. Two log-linear models with three variables in each model with all possible two-way interactions were developed. Categorical data analysis of the 2009 and 2010 crash dataset was performed. In order to compare the differences in response between the crash frequency and a particular crash-related variable, odds ratios were computed. The effects of crash frequency and crash-related factors were examined, and interactions among them were considered. The results indicated significant relationships between the crash frequency and ADT, crash type and driver age.It is worth mentioning that the expressway network understudy was continuously experiencing constructions throughout the study period. There is indication that ORT reduced the total crash number; also there is indication of changing the crash types and locations; and the majority of crashes occurred at the diverging and merging areas and resulted in more severe crashes. More data may be needed to confirm these results especially after all constructions and upgrades are made.The Implementation of open road tolling, the locations of Toll plazas, Automatic Vehicle Identification (AVI) subscription rate, traffic demand, and plaza geometry all may have a high influence on traffic safety concerns at Toll plazas, as concluded from the negative Binomial Model's results. The changing of sign locations, reducing the speed limit, installing variable message signs, configuring plazas properly, and other considerations may be the solution to overcome the potential safety problems in the vicinity of Toll plazas.The change of design to ORT was proven to be an excellent solution to several traffic operation problems, including reducing congestion and improving traffic flow and capacity at Toll plazas. However, addressing safety concerns at Toll plazas should take priority.
Show less - Date Issued
- 2011
- Identifier
- CFE0004466, ucf:49330
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004466