View All Items
- Title
- AUTONOMOUS ENVIRONMENTAL MAPPING IN MULTI-AGENT UAV SYSTEMS.
- Creator
-
Luotsinen, Linus Jan, Boloni, Ladislau L., University of Central Florida
- Abstract / Description
-
UAV units are by many researchers and aviation specialists considered the future and cutting edge of modern flight technology. This thesis discusses methods for efficient autonomous environmental mapping in a multi-agent domain. An algorithm that emphasizes on team work by sharing the agents local map information and exploration intentions is presented as a solution to the mapping problem. General theories on how to model and implement rational autonomous behaviour for UAV agents are...
Show moreUAV units are by many researchers and aviation specialists considered the future and cutting edge of modern flight technology. This thesis discusses methods for efficient autonomous environmental mapping in a multi-agent domain. An algorithm that emphasizes on team work by sharing the agents local map information and exploration intentions is presented as a solution to the mapping problem. General theories on how to model and implement rational autonomous behaviour for UAV agents are presented. Three different human and tactical behaviour modeling techniques are evaluated. The author found the CxBR paradigm to be the most interesting approach. Also, in order to test and quantify the theories presented in this thesis a simulation environment was developed. This simulation software allows for UAV agents to operate in a visual 3-D environment with mountains, other various terrain types, danger points and enemies to model unexpected events.
Show less - Date Issued
- 2004
- Identifier
- CFE0000051, ucf:46111
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000051
- Title
- A Smart UAV Platform for Railroad Inspection.
- Creator
-
Debevec, Ryan, Elgohary, Tarek, Xu, Yunjun, Lin, Kuo-Chi, University of Central Florida
- Abstract / Description
-
Using quadcopters for analysis of an environment has been an intriguing subject of study recently. The purpose of this work is to develop a fully autonomous UAV platform for Railroad inspection The dynamics of the quadrotor is derived using Euler's and Newton's laws and then linearized around the hover position. A PID controller is designed to control the states of the quadrotor in a manner to effectively follow a vision-based path, using the down facing camera on a Parrot Mambo quadrotor....
Show moreUsing quadcopters for analysis of an environment has been an intriguing subject of study recently. The purpose of this work is to develop a fully autonomous UAV platform for Railroad inspection The dynamics of the quadrotor is derived using Euler's and Newton's laws and then linearized around the hover position. A PID controller is designed to control the states of the quadrotor in a manner to effectively follow a vision-based path, using the down facing camera on a Parrot Mambo quadrotor. Using computer vision the distance from the position of the quadrotor to the position of the center of the path was found. Using the yaw controller to minimize this distance was found to be an adequate method of vision-based path following, by keeping the area of interest in the field of view of the camera. The downfacing camera is also simultaneously observing the path to detect defects using machine learning. This technique was able to detect simulated defects on the path with around 90% accuracy.
Show less - Date Issued
- 2019
- Identifier
- CFE0007623, ucf:52555
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007623
- Title
- An Exploration of Unmanned Aerial Vehicle Direct Manipulation Through 3D Spatial Interaction.
- Creator
-
Pfeil, Kevin, Laviola II, Joseph, Hughes, Charles, Sukthankar, Gita, University of Central Florida
- Abstract / Description
-
We present an exploration that surveys the strengths and weaknesses of various 3D spatial interaction techniques, in the context of directly manipulating an Unmanned Aerial Vehicle (UAV). Particularly, a study of touch- and device- free interfaces in this domain is provided. 3D spatial interaction can be achieved using hand-held motion control devices such as the NintendoWiimote, but computer vision systems offer a different and perhaps more natural method. In general, 3D user interfaces ...
Show moreWe present an exploration that surveys the strengths and weaknesses of various 3D spatial interaction techniques, in the context of directly manipulating an Unmanned Aerial Vehicle (UAV). Particularly, a study of touch- and device- free interfaces in this domain is provided. 3D spatial interaction can be achieved using hand-held motion control devices such as the NintendoWiimote, but computer vision systems offer a different and perhaps more natural method. In general, 3D user interfaces (3DUI) enable a user to interact with a system on a more robust and potentially more meaningful scale. We discuss the design and development of various 3D interaction techniques using commercially available computer vision systems, and provide an exploration of the effects that these techniques have on an overall user experience in the UAV domain. Specific qualities of the user experience are targeted, including the perceived intuition, ease of use, comfort, and others. We present a complete user study for upper-body gesture, and preliminary reactions towards 3DUI using hand-and-finger gestures are also discussed. The results provide evidence that supports the use of 3DUI in this domain, as well as the use of certain styles of techniques over others.
Show less - Date Issued
- 2013
- Identifier
- CFE0004910, ucf:49612
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004910
- Title
- Guided Autonomy for Quadcopter Photography.
- Creator
-
Alabachi, Saif, Sukthankar, Gita, Behal, Aman, Lin, Mingjie, Boloni, Ladislau, Laviola II, Joseph, University of Central Florida
- Abstract / Description
-
Photographing small objects with a quadcopter is non-trivial to perform with many common user interfaces, especially when it requires maneuvering an Unmanned Aerial Vehicle (C) to difficult angles in order to shoot high perspectives. The aim of this research is to employ machine learning to support better user interfaces for quadcopter photography. Human Robot Interaction (HRI) is supported by visual servoing, a specialized vision system for real-time object detection, and control policies...
Show morePhotographing small objects with a quadcopter is non-trivial to perform with many common user interfaces, especially when it requires maneuvering an Unmanned Aerial Vehicle (C) to difficult angles in order to shoot high perspectives. The aim of this research is to employ machine learning to support better user interfaces for quadcopter photography. Human Robot Interaction (HRI) is supported by visual servoing, a specialized vision system for real-time object detection, and control policies acquired through reinforcement learning (RL). Two investigations of guided autonomy were conducted. In the first, the user directed the quadcopter with a sketch based interface, and periods of user direction were interspersed with periods of autonomous flight. In the second, the user directs the quadcopter by taking a single photo with a handheld mobile device, and the quadcopter autonomously flies to the requested vantage point.This dissertation focuses on the following problems: 1) evaluating different user interface paradigms for dynamic photography in a GPS-denied environment; 2) learning better Convolutional Neural Network (CNN) object detection models to assure a higher precision in detecting human subjects than the currently available state-of-the-art fast models; 3) transferring learning from the Gazebo simulation into the real world; 4) learning robust control policies using deep reinforcement learning to maneuver the quadcopter to multiple shooting positions with minimal human interaction.
Show less - Date Issued
- 2019
- Identifier
- CFE0007774, ucf:52369
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007774
- Title
- THE RELEVANCE OF TIME-TO-DIGITAL CONVERTERS TO SMALL PLATFORM DIRECTION FINDING SYSTEMS.
- Creator
-
Nelson, Paul, Gong, Xun, University of Central Florida
- Abstract / Description
-
This thesis explores a Time-Difference-of-Arrival (TDOA) approach to radio direction finding, utilizing picosecond-resolution Time-to-Digital Converters (TDCs). By measuring the relative time of arrival of a pulsed RF signal impinging on an antenna array, direction of arrival (DOA) can be ascertained. This technology enables versatile DOA calculation on platforms only several meters in length, and offers various size, weight, power, and cost advantages when compared to present DF technologies...
Show moreThis thesis explores a Time-Difference-of-Arrival (TDOA) approach to radio direction finding, utilizing picosecond-resolution Time-to-Digital Converters (TDCs). By measuring the relative time of arrival of a pulsed RF signal impinging on an antenna array, direction of arrival (DOA) can be ascertained. This technology enables versatile DOA calculation on platforms only several meters in length, and offers various size, weight, power, and cost advantages when compared to present DF technologies. A short baseline S-band TDOA DF system utilizing TDCs is designed, fabricated, and tested in a laboratory environment. This research suggests that such a DF system based on TDCs provides sufficient accuracy and precision to resolve Angle-of-Arrival (AOA) within several degrees.
Show less - Date Issued
- 2010
- Identifier
- CFE0003115, ucf:48649
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003115
- Title
- The Impact of Automation and Stress on Human Performance in UAV Operation.
- Creator
-
Lin, Jinchao, Matthews, Gerald, Reinerman, Lauren, Szalma, James, Funke, Gregory, University of Central Florida
- Abstract / Description
-
The United States Air Force (USAF) has increasing needs for unmanned aerial vehicle (UAV) operators. Automation may enable a single operator to manage multiple UAVs at the same time. Multi-UAV operation may require a unique set of skills and the need for new operators calls for targeting new populations for recruitment. The objective of this research is to develop a simulation environment for studying the role of individual differences in UAV operation under different task configurations and...
Show moreThe United States Air Force (USAF) has increasing needs for unmanned aerial vehicle (UAV) operators. Automation may enable a single operator to manage multiple UAVs at the same time. Multi-UAV operation may require a unique set of skills and the need for new operators calls for targeting new populations for recruitment. The objective of this research is to develop a simulation environment for studying the role of individual differences in UAV operation under different task configurations and investigate predictors of performance and stress. Primarily, the study examined the impact of levels of automation (LOAs), as well as task demands, on task performance, stress and operator reliance on automation. Two intermediate LOAs were employed for two surveillance tasks included in the simulation of UAV operation. Task demand was manipulated via the high and low frequency of events associated with additional tasks included in the simulation. The task demand and LOA manipulations influenced task performance generally as expected. The task demand manipulations elicited higher subjective distress and workload. LOAs did not affect operator workload but affected reliance behavior. Also, this study examined the role of individual differences in simulated UAV operation. A variety of individual difference factors were associated with task performance and with subjective stress response. Video gaming experience was linked to lower distress and better performance, suggesting possible transfer of skills. Some gender differences were revealed in stress response, task performance, but all the gender effects became insignificant with gaming experience controlled. Generally, the effects of personality were consistent with previous studies, except some novel findings with the performance metrics. Additionally, task demand was found to moderate the influence of personality factors on stress response and performance metrics. Specifically, conscientiousness was associated with higher subjective engagement and performance when demands were higher. This study supports future research which aims to improve the dynamic interfaces in UAV operation, optimize operator reliance on automation, and identify individuals with the highest aptitude for multi-UAV control.
Show less - Date Issued
- 2017
- Identifier
- CFE0006951, ucf:51630
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006951
- Title
- The Bridging Technique: Crossing Over the Modality Shifting Effect.
- Creator
-
Alicia, Thomas, Mouloua, Mustapha, Hancock, Peter, Szalma, James, Pharmer, James, University of Central Florida
- Abstract / Description
-
Operator responsiveness to critical alarm/alert display systems must rely on faster and safer behavioral responses in order to ensure mission success in complex environments such as the operator station of an Unmanned Aerial System (UAS). An important design consideration for effective UAS interfaces is how to map these critical alarm/alert display systems to an appropriate sensory modality (e.g., visual or auditory) (Sarter, 2006). For example, if an alarm is presented during a mission in a...
Show moreOperator responsiveness to critical alarm/alert display systems must rely on faster and safer behavioral responses in order to ensure mission success in complex environments such as the operator station of an Unmanned Aerial System (UAS). An important design consideration for effective UAS interfaces is how to map these critical alarm/alert display systems to an appropriate sensory modality (e.g., visual or auditory) (Sarter, 2006). For example, if an alarm is presented during a mission in a modality already highly taxed or overloaded, this can result in increased response time (RT), thereby decreasing operator performance (Wickens, 1976). To overcome this problem, system designers may allow the switching of the alarm display from a highly-taxed to a less-taxed modality (Stanney et al., 2004). However, this modality switch may produce a deleterious effect known as the Modality Shifting Effect (MSE) that erodes the expected performance gain (Spence (&) Driver, 1997). The goal of this research was to empirically examine a technique called bridging which allows the transitioning of a cautionary alarm display from one modality to another while simultaneously counteracting the Modality Shifting Effect.Sixty-four participants were required to complete either a challenging visual or auditory task using a computer-based UAS simulation environment while responding to both visual and auditory alarms. An approach was selected which utilized two 1 (task modality) x 2 (switching technique) ANCOVAs and one 2 (modality) x 2 (technique) ANCOVA, using baseline auditory and visual RT as covariates, to examine differences in alarm response times when the alert modality was changed abruptly or with the bridging technique from a highly loaded sensory channel to an underloaded sensory channel. It was hypothesized that the bridging technique condition would show faster response times for a new unexpected modality versus the abrupt switching condition. The results indicated only a marginal decrease in response times for the auditory alerts and a larger yet not statistically significant effect for the visual alerts; results were also not statistically significant for the analysis collapsed across modality. Findings suggest that there may be some benefit of the bridging technique on performance of alarm responsiveness, but further research is still needed before suggesting generalizable design guidelines for switching modalities which can apply in a variety of complex human-machine systems.
Show less - Date Issued
- 2015
- Identifier
- CFE0005568, ucf:50283
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005568
- Title
- Online Path Planning and Control Solution for a Coordinated Attack of Multiple Unmanned Aerial Vehicles in a Dynamic Environment.
- Creator
-
Vega-Nevarez, Juan, Qu, Zhihua, Haralambous, Michael, Xu, Yunjun, University of Central Florida
- Abstract / Description
-
The role of the unmanned aerial vehicle (UAV) has significantly expanded in the military sector during the last decades mainly due to their cost effectiveness and their ability to eliminate the human life risk. Current UAV technology supports a variety of missions and extensive research and development is being performed to further expand its capabilities. One particular field of interest is the area of the low cost expendable UAV since its small price tag makes it an attractive solution for...
Show moreThe role of the unmanned aerial vehicle (UAV) has significantly expanded in the military sector during the last decades mainly due to their cost effectiveness and their ability to eliminate the human life risk. Current UAV technology supports a variety of missions and extensive research and development is being performed to further expand its capabilities. One particular field of interest is the area of the low cost expendable UAV since its small price tag makes it an attractive solution for target suppression. A swarm of these low cost UAVs can be utilized as guided munitions or kamikaze UAVs to attack multiple targets simultaneously. The focus of this thesis is the development of a cooperative online path planning algorithm that coordinates the trajectories of these UAVs to achieve a simultaneous arrival to their dynamic targets. A nonlinear autopilot design based on the dynamic inversion technique is also presented which stabilizes the dynamics of the UAV in its entire operating envelope. A nonlinear high fidelity six degrees of freedom model of a fixed wing aircraft was developed as well that acted as the main test platform to verify the performance of the presented algorithms
Show less - Date Issued
- 2012
- Identifier
- CFE0004613, ucf:49925
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004613
- Title
- Geolocation of Diseased Leaves in Strawberry Orchards for a Custom-Designed Octorotor.
- Creator
-
Garcia, Christian, Xu, Yunjun, Lin, Kuo-Chi, Kauffman, Jeffrey, University of Central Florida
- Abstract / Description
-
In recent years, technological advances have shown a strive for more automated processes in agriculture, as seem with the use of unmanned aerial vehicles (UAVs) with onboard sensors in many applications, including disease detection and yield prediction. In this thesis, an octorotor UAV is presented that was designed, built, and flight tested, with features that are custom-designed for strawberry orchard disease detection. To further automate the disease scouting operation, geolocation, or the...
Show moreIn recent years, technological advances have shown a strive for more automated processes in agriculture, as seem with the use of unmanned aerial vehicles (UAVs) with onboard sensors in many applications, including disease detection and yield prediction. In this thesis, an octorotor UAV is presented that was designed, built, and flight tested, with features that are custom-designed for strawberry orchard disease detection. To further automate the disease scouting operation, geolocation, or the process of determining global position coordinates of identified diseased regions based on images taken, is investigated. A Kalman filter is designed, based on a linear measurement model derived from an orthographic projection method, to estimate the target position. Simulation, as well as an ad-hoc experiment using flight data, is performed to compare this filter to the extended Kalman filter (EKF), which is based on the commonly used perspective projection method. The filter is embedded onto a CPU board for real-time use aboard the octorotor UAV, and the algorithm structure for this process is presented. In the later part of the thesis, a probabilistic data association method is used, jointly with a proposed logic-based measurement-to-target correlation method, to analyze measurements of different target sources and is incorporated into the Kalman filter. A simulation and an ad-hoc experiment, using video and flight data acquired aboard the octorotor UAV with a gimballed camera in hover flight, are performed to demonstrate the effectiveness of the algorithm and UAV platform.
Show less - Date Issued
- 2016
- Identifier
- CFE0006305, ucf:51597
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006305
- Title
- An SoS Conceptual Model, LVC Simulation Framework, and a Prototypical Implementation of Unmanned System Interventions for Nuclear Power Plant Disaster Preparedness, Response, and Mitigation.
- Creator
-
Davis, Matthew, Proctor, Michael, O'Neal, Thomas, Reilly, Charles, Sulfredge, C., Smith, Roger, University of Central Florida
- Abstract / Description
-
Nuclear power plant disasters can have severe and far-reaching consequences, thus emergency managers and first responders from utility owners to the DoD must be prepared to respond to and mitigate effects protecting the public and environment from further damage. Rapidly emerging unmanned systems promise significant improvement in response and mitigation of nuclear disasters. Models and simulations (M(&)S) may play a significant role in improving readiness and reducing risks through its use...
Show moreNuclear power plant disasters can have severe and far-reaching consequences, thus emergency managers and first responders from utility owners to the DoD must be prepared to respond to and mitigate effects protecting the public and environment from further damage. Rapidly emerging unmanned systems promise significant improvement in response and mitigation of nuclear disasters. Models and simulations (M(&)S) may play a significant role in improving readiness and reducing risks through its use in planning, analysis, preparation training, and mitigation rehearsal for a wide spectrum of derivate scenarios. Legacy nuclear reactor M(&)S lack interoperability between themselves and avatar or agent-based simulations of emergent unmanned systems. Bridging the gap between past and the evolving future, we propose a conceptual model (CM) using a System of System (SoS) approach, a simulation federation framework capable of supporting concurrent and interoperating live, virtual and constructive simulation (LVC), and demonstrate a prototypical implementation of an unmanned system intervention for nuclear power plant disaster using the constructive simulation component. The SoS CM, LVC simulation framework, and prototypical implementation are generalizable to other preparedness, response, and mitigation scenarios. The SoS CM broadens the current stovepipe reactor-based simulations to a system-of-system perspective. The framework enables distributed interoperating simulations with a network of legacy and emergent avatar and agent simulations. The unmanned system implementation demonstrates feasibility of the SoS CM and LVC framework through replication of selective Fukushima events. Further, the system-of-systems approach advances life cycle stages including concept exploration, system design, engineering, training, and mission rehearsal. Live, virtual, and constructive component subsystems of the CM are described along with an explanation of input/output requirements. Finally, applications to analysis and training, an evaluation of the SoS CM based on recently proposed criteria found in the literature, and suggestions for future research are discussed.
Show less - Date Issued
- 2017
- Identifier
- CFE0006732, ucf:51879
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006732
- Title
- Autonomous Discovery and Maintenance of Mobile Frees-Space-Optical Links.
- Creator
-
Khan, Mahmudur, Yuksel, Murat, Pourmohammadi Fallah, Yaser, Ewetz, Rickard, Turgut, Damla, Nam, Boo Hyun, University of Central Florida
- Abstract / Description
-
Free-Space-Optical (FSO) communication has the potential to play a significant role in future generation wireless networks. It is advantageous in terms of improved spectrum utilization, higher data transfer rate, and lower probability of interception from unwanted sources. FSO communication can provide optical-level wireless communication speeds and can also help solve the wireless capacity problem experienced by the traditional RF-based technologies. Despite these advantages, communications...
Show moreFree-Space-Optical (FSO) communication has the potential to play a significant role in future generation wireless networks. It is advantageous in terms of improved spectrum utilization, higher data transfer rate, and lower probability of interception from unwanted sources. FSO communication can provide optical-level wireless communication speeds and can also help solve the wireless capacity problem experienced by the traditional RF-based technologies. Despite these advantages, communications using FSO transceivers require establishment and maintenance of line-of-sight (LOS). We consider autonomous mobile nodes (Unmanned Ground Vehicles or Unmanned Aerial Vehicles), each with one FSO transceiver mounted on a movable head capable of scanning in the horizontal and vertical planes. We propose novel schemes that deal with the problems of automatic discovery, establishment, and maintenance of LOS alignment between these nodes with mechanical steering of the directional FSO transceivers in 2-D and 3-D scenarios. We perform extensive simulations to show the effectiveness of the proposed methods for both neighbor discovery and LOS maintenance. We also present a prototype implementation of such mobile nodes with FSO transceivers. The potency of the neighbor discovery and LOS alignment protocols is evaluated by analyzing the results obtained from both simulations and experiments conducted using the prototype. The results show that, by using such mechanically steerable directional transceivers and the proposed methods, it is possible to establish optical wireless links within practical discovery times and maintain the links in a mobile setting with minimal disruption.
Show less - Date Issued
- 2018
- Identifier
- CFE0007575, ucf:52573
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007575
- Title
- Detecting, Tracking, and Recognizing Activities in Aerial Video.
- Creator
-
Reilly, Vladimir, Shah, Mubarak, Georgiopoulos, Michael, Stanley, Kenneth, Dogariu, Aristide, University of Central Florida
- Abstract / Description
-
In this dissertation we address the problem of detecting humans and vehicles, tracking their identities in crowded scenes, and finally determining human activities. First, we tackle the problem of detecting moving as well as stationary objects in scenes that contain parallax and shadows. We constrain the search of pedestrians and vehicles by representing them as shadow casting out of plane or (SCOOP) objects.Next, we propose a novel method for tracking a large number of densely moving objects...
Show moreIn this dissertation we address the problem of detecting humans and vehicles, tracking their identities in crowded scenes, and finally determining human activities. First, we tackle the problem of detecting moving as well as stationary objects in scenes that contain parallax and shadows. We constrain the search of pedestrians and vehicles by representing them as shadow casting out of plane or (SCOOP) objects.Next, we propose a novel method for tracking a large number of densely moving objects in aerial video. We divide the scene into grid cells to define a set of local scene constraints which we use as part of the matching cost function to solve the tracking problem which allows us to track fast-moving objects in low frame rate videos.Finally, we propose a method for recognizing human actions from few examples. We use the bag of words action representation, assume that most of the classes have many examples, and construct Support Vector Machine models for each class. We then use Support Vector Machines for classes with many examples to improve the decision function of the Support Vector Machine that was trained using few examples via late fusion of weighted decision values.
Show less - Date Issued
- 2012
- Identifier
- CFE0004627, ucf:49935
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004627
- Title
- COALITION FORMATION IN MULTI-AGENT UAV SYSTEMS.
- Creator
-
DeJong, Paul, Boloni, Ladislau, University of Central Florida
- Abstract / Description
-
Coalitions are collections of agents that join together to solve a common problem that either cannot be solved individually or can be solved more efficiently as a group. Each individual agent has capabilities that can benefit the group when working together as a coalition. Typically, individual capabilities are joined together in an additive way when forming a coalition. This work will introduce a new operator that is used when combining capabilities, and suggest that the behavior of the...
Show moreCoalitions are collections of agents that join together to solve a common problem that either cannot be solved individually or can be solved more efficiently as a group. Each individual agent has capabilities that can benefit the group when working together as a coalition. Typically, individual capabilities are joined together in an additive way when forming a coalition. This work will introduce a new operator that is used when combining capabilities, and suggest that the behavior of the operator is contextual, depending on the nature of the capability itself. This work considers six different capabilities of Unmanned Air Vehicles (UAV) and determines the nature of the new operator in the context of each capability as coalitions (squadrons) of UAVs are formed. Coalitions are formed using three different search algorithms, both with and without heuristics: Depth-First, Depth-First Iterative Deepening, and Genetic Algorithm (GA). The effectiveness of each algorithm is evaluated. Multi agent-based UAV simulation software was developed and used to test the ideas presented. In addition to coalition formation, the software aims to address additional multi-agent issues such as agent identity, mutability, and communication as applied to UAV systems, in a realistic simulated environment. Social potential fields provide a means of modeling a clustering attractive force at the same time as a collision-avoiding repulsive force, and are used by the simulation to maintain aircraft position relative to other UAVs.
Show less - Date Issued
- 2005
- Identifier
- CFE0000394, ucf:46332
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000394