Current Search: Ultra Wide Band (x)
View All Items
- Title
- ULTRA-WIDE BAND IN COMMUNICATIONS: PERFORMANCE ANALYSIS AND ENHANCEMENTS.
- Creator
-
Berksoy, Burak, WEI, Lei, University of Central Florida
- Abstract / Description
-
Over the last ten years, Ultra-Wide Band (UWB) technology has attracted tremendous research attention. Frequency allocation of 3.1-10.6 GHz for UWB application by FCC made it apparent that UWB will be the technology for future wireless high speed communication applications. With the promise of high data rates (high channel capacity), UWB also offers advantages such as communication security, high multi-path resolution, good penetration capability, ability to coexist with other communication...
Show moreOver the last ten years, Ultra-Wide Band (UWB) technology has attracted tremendous research attention. Frequency allocation of 3.1-10.6 GHz for UWB application by FCC made it apparent that UWB will be the technology for future wireless high speed communication applications. With the promise of high data rates (high channel capacity), UWB also offers advantages such as communication security, high multi-path resolution, good penetration capability, ability to coexist with other communication schemes in the same band, and finally, circuit simplicity. The theoretical advantages of UWB has made it a great candidate for short distance communications, however, UWB communications have many challenges, for example, sub-nanosecond pulse generation, timing sensitivity of modulation and synchronization, flat antenna performance over a wide bandwidth, effect of existing systems on UWB systems. In order to experiment with various UWB modulation schemes, and to study transmitter and receiver structures, an accurate channel model need be established. In this dissertation, our first contribution is to evaluate and implement two major statistical channel models. The first model is proposed by AT\&T Labs and is in the form of an autoregressive IIR filter. Although this is an accurate channel model to represent UWB behavior, it is proposed before the allocation of 3.1-10.6 GHz frequency band, hence, it could not simulate the correct frequency spectrum. The second model is proposed by Saleh and Valenzuela, which has been widely accepted by UWB community to be the most accurate channel model for UWB systems. Recently disbanded task group 802.15.3a which was assigned to standardize a UWB communication scheme has also accepted the latter model. Our second contribution is to derive optimal pulses for PPM signals. Using the accurate channel model in computer simulations, we experimented on various UWB communication schemes. We found that the traditional UWB pulses being used in pulse position modulated UWB systems did not perform optimally. A set of optimized UWB pulses and the methodology to calculate optimal pulses for any modulation index for PPM systems have been proposed in this dissertation. It is found that the optimal pulse can improve the performance of UWB systems by as much as 0.7 dB. With the PPM pulse optimization, the theoretical performance limits of PPM systems are derived. The third contribution from this dissertation is to design near optimal practical implementable receiver structures. Some of the results obtained from PPM pulse optimization are found to be theoretical and not practical. More practical approach to the receiver structures were needed for industrial interest. We proposed simple sub-optimal receiver structures that are able to perform only a few dB less than the optimal receivers are proposed. These simple, low-cost receiver structures are strong alternatives to the complex traditional optimal receivers.
Show less - Date Issued
- 2008
- Identifier
- CFE0002106, ucf:47531
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002106
- Title
- ULTRA-WIDEBAND ORTHOGONAL FREQUENCY CODED SAW CORRELATORS.
- Creator
-
Gallagher, Daniel, Malocha, Donald, University of Central Florida
- Abstract / Description
-
Ultrawideband (UWB) communication new technology with ability to share the FCC allocated frequency spectrum, large channel capacity and data rate, simple transceiver architecture and high performance in noisy environments. Such communication advantages have paved the way for emerging wireless technologies such as wireless high definition video streaming, wireless sensor networks and more. This thesis examines orthogonal frequency coded surface acoustic wave (SAW) correlators for use in...
Show moreUltrawideband (UWB) communication new technology with ability to share the FCC allocated frequency spectrum, large channel capacity and data rate, simple transceiver architecture and high performance in noisy environments. Such communication advantages have paved the way for emerging wireless technologies such as wireless high definition video streaming, wireless sensor networks and more. This thesis examines orthogonal frequency coded surface acoustic wave (SAW) correlators for use in advanced UWB communication systems. Orthogonal frequency coding (OFC) and pseudo-noise (PN) coding provides a means for UWB spreading of data. The use of OFC spectrally spreads a PN sequence beyond that of CDMA because of the increased bandwidth; allowing for improved correlation gain. The transceiver approach is still very similar to that of the CDMA approach but provides greater code diversity. Use of SAW correlators eliminates many of the costly components that are needed in the IF block in the transmitter and receiver, and reduces much of the signal processing requirements. The OFC SAW correlator device consists of a dispersive OFC transducer and a wideband output transducer. The dispersive filter was designed using seven contiguous chip frequencies within the transducer. Each chip is weighted in the transducer to account for the varying conductance of the chips and to compensate for the output transducer apodization. Experimental correlator results of an OFC SAW correlation filter are presented. The dispersive filter is designed using seven contiguous chip frequencies within the transducer. SAW correlators with fractional bandwidth of approximately 29% were fabricated on lithium niobate (LiNbO3) having a center frequency of 250 MHz and the filter has a processing gain of 49. A coupling of modes (COM) model is used to predict the experimental SAW filter response. Discussion of the filter design, analysis and measurements are presented. Results are shown for operation in a matched filter correlator for use in an UWB communication system and compared to predictions.
Show less - Date Issued
- 2007
- Identifier
- CFE0001820, ucf:47338
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001820