Current Search: Ultrafast optics -- nonlinear optics (x)
View All Items
- Title
- Laser Filamentation - Beyond Self-focusing and Plasma Defocusing.
- Creator
-
Lim, Khan, Richardson, Martin, Chang, Zenghu, Christodoulides, Demetrios, Zhang, Xi-Cheng, University of Central Florida
- Abstract / Description
-
Laser filamentation is a highly complex and dynamic nonlinear process that is sensitive to many physical parameters. The basic properties that define a filament consist of (i) a narrow, high intensity core that persists for distances much greater than the Rayleigh distance, (ii) a low density plasma channel existing within the filament core, and (iii) a supercontinuum generated over the course of filamentation. However, there remain many questions pertaining to how these basic properties are...
Show moreLaser filamentation is a highly complex and dynamic nonlinear process that is sensitive to many physical parameters. The basic properties that define a filament consist of (i) a narrow, high intensity core that persists for distances much greater than the Rayleigh distance, (ii) a low density plasma channel existing within the filament core, and (iii) a supercontinuum generated over the course of filamentation. However, there remain many questions pertaining to how these basic properties are affected by changes in the conditions in which the filaments are formed; that is the premise of the work presented in this dissertation.To examine the effects of anomalous dispersion and of different multi-photon ionization regimes, filaments were formed in solids with different laser wavelengths. The results provided a better understanding of supercontinuum generation in the anomalous dispersion regime, and of how multi-photon ionization can affect the formation of filaments.Three different experiments were carried out on filamentation in air. The first was an investigation into the effects of geometrical focusing. A simplified theoretical model was derived to determine the transition of filamentation in the linear-focusing and nonlinear- focusing regimes. The second examined the effects of polarization on supercontinuum generation, where a polarization-dependent anomalous spectral broadening phenomenon due to molecular effects was identified. The third involved the characterization of filaments in the ultraviolet. The combination of physical mechanisms responsible for filamentation in the ultraviolet was found to be different from that in the near infrared.
Show less - Date Issued
- 2014
- Identifier
- CFE0005520, ucf:50317
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005520
- Title
- Coupling of Laser Beams for Filament Propagation.
- Creator
-
Kepler, Daniel, Richardson, Martin, Baudelet, Matthieu, Christodoulides, Demetrios, University of Central Florida
- Abstract / Description
-
Laser filamentation is a nonlinear process involving high-energy, ultrashort pulses that create narrow, non-diffracting structures over many times the Raleigh length. While many of the characteristics of filaments can vary greatly depending on the physical parameters used to create them, they share several defining features: a high intensity core, a lower intensity cladding of photons that serves as an energy reservoir to the core, and spectral broadening into a supercontinuum. While there...
Show moreLaser filamentation is a nonlinear process involving high-energy, ultrashort pulses that create narrow, non-diffracting structures over many times the Raleigh length. While many of the characteristics of filaments can vary greatly depending on the physical parameters used to create them, they share several defining features: a high intensity core, a lower intensity cladding of photons that serves as an energy reservoir to the core, and spectral broadening into a supercontinuum. While there have been many studies on the creation and control of multiple filaments from one laser pulse and a few studies on the interaction of two single filaments, many fundamental questions concerning the nature of this interaction still exist.This thesis seeks to explore the correlation between ultrashort pulses involving spatial separation, temporal delay, and relative degree of polarization using an interferometric approach. Evaluating the beam profiles and spectrum that result from varying those parameters.
Show less - Date Issued
- 2016
- Identifier
- CFE0006531, ucf:51374
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006531
- Title
- Nonlinear Optical Response of Simple Molecules and Two-Photon Semiconductor Lasers.
- Creator
-
Reichert, Matthew, Vanstryland, Eric, Hagan, David, Likamwa, Patrick, Peale, Robert, University of Central Florida
- Abstract / Description
-
This dissertation investigates two long standing issues in nonlinear optics: complete characterization of the ultrafast dynamics of simple molecules, and the potential of a two-photon laser using a bulk semiconductor gain medium. Within the Born-Oppenheimer approximation, nonlinear refraction in molecular liquids and gases can arise from both bound-electronic and nuclear origins. Knowledge of the magnitudes, temporal dynamics, polarization and spectral dependences of each of these mechanisms...
Show moreThis dissertation investigates two long standing issues in nonlinear optics: complete characterization of the ultrafast dynamics of simple molecules, and the potential of a two-photon laser using a bulk semiconductor gain medium. Within the Born-Oppenheimer approximation, nonlinear refraction in molecular liquids and gases can arise from both bound-electronic and nuclear origins. Knowledge of the magnitudes, temporal dynamics, polarization and spectral dependences of each of these mechanisms is important for many applications including filamentation, white-light continuum generation, all-optical switching, and nonlinear spectroscopy. In this work the nonlinear dynamics of molecules are investigated in both liquid and gas phase with the recently developed beam deflection technique which measures nonlinear refraction directly in the time domain. Thanks to the utility of the beam deflection technique we are able to completely determine the third-order response function of one of the most important molecular liquids in nonlinear optics, carbon disulfide. This allows the prediction of essentially any nonlinear refraction or two-photon absorption experiment on CS2. Measurements conducted on air (N2 and O2) and gaseous CS2 reveal coherent rotational revivals in the degree of alignment of the ensemble at a period that depends on its moment of inertia. This allows measurement of the rotational and centrifugal distortion constants of the isolated molecules. Additionally, the rotational contribution to the beam deflection measurement can be eliminated thanks to the particular polarization dependence of the mechanism. At a specific polarization, the dominant remaining contribution is due to the bound-electrons. Thus both the bound-electronic nonlinear refractive index of air, and second hyperpolarizability of isolated CS2 molecules, are measured directly. The later agrees well with liquid CS2 measurements, where local field effects are significant. The second major portion of this dissertation addresses the possibility of using bulk semiconductors as a two-photon gain medium. A two-photon laser has been a goal of nonlinear optics since shortly after the original laser's development. In this case, two-photons are emitted from a single electronic transition rather than only one. This processes is known as two-photon gain (2PG). Semiconductors have large two-photon absorption coefficients, which are enhanced by ~2 orders of magnitude when using photons of very different energies, e.g., ??_a?10??_b. This enhancement should translate into large 2PG coefficients as well, given the inverse relationship between absorption and gain. Here, we experimentally demonstrate both degenerate and nondegenerate 2PG in optically excited bulk GaAs via pump-probe experiments. This constitutes, to my knowledge, the first report of nondegenerate two-photon gain. Competition between 2PG and competing processes, namely intervalence band and nondegenerate three-photon absorption (ND-3PA), in both cases are theoretically analyzed. Experimental measurements of ND-3PA agree with this analysis and show that it is enhanced much more than ND-2PG. It is found for both degenerate and nondegenerate photon pairs that the losses dominate the two-photon gain, preventing the possibility of a two-photon semiconductor laser.
Show less - Date Issued
- 2015
- Identifier
- CFE0005874, ucf:50871
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005874
- Title
- White Light Continuum for Broadband Nonlinear Spectroscopy.
- Creator
-
Ensley, Trenton, Hagan, David, Vanstryland, Eric, Zeldovich, Boris, Christodoulides, Demetrios, Schulte, Alfons, University of Central Florida
- Abstract / Description
-
Supercontinuum (SC) generation, oftentimes referred to as white-light continuum (WLC), has been a subject of interest for more than 40 years. From the first observation of WLC in condensed media in the early 1970s to the first observation of WLC in gases in the mid-1980s, much work has been devoted to developing a framework for understanding the complex nature of this phenomenon as well as discovering its utility in various applications. The main effort of this dissertation is to develop a...
Show moreSupercontinuum (SC) generation, oftentimes referred to as white-light continuum (WLC), has been a subject of interest for more than 40 years. From the first observation of WLC in condensed media in the early 1970s to the first observation of WLC in gases in the mid-1980s, much work has been devoted to developing a framework for understanding the complex nature of this phenomenon as well as discovering its utility in various applications. The main effort of this dissertation is to develop a WLC for the purpose of broadband nonlinear spectroscopy and use it in spectroscopic measurements. The ability to generate a high-quality, high-spectral-irradiance source of radiation confined in a single beam that spans the visible and near-infrared spectral regimes has great utility for nonlinear measurement methods such as the Z-scan technique. Using a broadband WLC instead of conventional tunable sources of radiation such as optical parametric generators/amplifiers has been shown to increase the efficiency of such measurements by nearly an order of magnitude. Although WLC generation has many complex processes involved, and complete models of the process involve highly complex numerical modeling, simple models can still guide us in the optimization of systems for WLC generation. In this dissertation the effects of two key mechanisms behind WLC generation in gaseous media are explored: self-phase modulation (SPM) and ionization leading to plasma production. The effects of SPM are largely dependent upon the third-order nonlinear refractive index, n2, of the gaseous medium whereas the effects of plasma production are dependent upon many parameters including the initial number density, ionization potential/energy, and the rate of ionization production. It is found that in order to generate a stable WLC suitable for nonlinear spectroscopy, the phase contributions from SPM and plasma production should be nearly equal. This guided our experiments in inert gases using mJ level, 150 fs-FWHM (full-width at half-maximum) pulses at 780 nm as well as 40 fs-FWHM pulses primarily at 1800 nm to create a stable, high-spectral-irradiance WLC. The generated WLC is shown to have sufficient spectral energy and spatial quality suitable for nonlinear spectroscopic measurements. In addition to extending the WLC bandwidth by using a long wavelength (1800 nm) pump source, it is found that by using a secondary weak seed pulse with a peak irradiance three orders of magnitude less than the main pulse, the spectral energy density is enhanced by more than a factor of 3 in Krypton gas for a WLC spectrum that spans over 2 octaves. Numerical simulations are presented which qualitatively describe the experimental results. The spectral enhancement of the WLC by seeding is also demonstrated for other inert gases and condensed media. Other efforts described in this dissertation include the development of the Dual-Arm Z-scan technique and its extension to measuring thin film nonlinearities in the presence of large substrate signals as well as predicting the n2 spectra of organic molecules (where we can approximate their behavior as if they were centrosymmetric) from knowledge of the one-photon and two-photon absorption spectra using a simplified sum-over-states quantum perturbative model by utilizing a quasi 3-level and quasi 4-level system.
Show less - Date Issued
- 2015
- Identifier
- CFE0005608, ucf:50264
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005608
- Title
- Engineering and Application of Ultrafast Laser Pulses and Filamentation in Air.
- Creator
-
Barbieri, Nicholas, Richardson, Martin, University of Central Florida
- Abstract / Description
-
Continuing advances in laser and photonic technology has seen the development of lasers with increasing power and increasingly short pulsewidths, which have become available over an increasing range of wavelengths. As the availability of laser sources grow, so do their applications. To make better use of this improving technology, understanding and controlling laser propagation in free space is critical, as is understanding the interaction between laser light and matter.The need to better...
Show moreContinuing advances in laser and photonic technology has seen the development of lasers with increasing power and increasingly short pulsewidths, which have become available over an increasing range of wavelengths. As the availability of laser sources grow, so do their applications. To make better use of this improving technology, understanding and controlling laser propagation in free space is critical, as is understanding the interaction between laser light and matter.The need to better control the light obtained from increasingly advanced laser sources leads to the emergence of beam engineering, the systematic understanding and control of light through refractive media and free space. Beam engineering enables control over the beam shape, energy and spectral composition during propagation, which can be achieved through a variety of means. In this dissertation, several methods of beam engineering are investigated. These methods enable improved control over the shape and propagation of laser light. Laser-matter interaction is also investigated, as it provides both a means to control the propagation of pulsed laser light through the atmosphere, and provides a means to generation remote sources of radiation.
Show less - Date Issued
- 2013
- Identifier
- CFE0004650, ucf:49881
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004650