Current Search: Unsupervised Learning (x)
View All Items
- Title
- Robust, Scalable, and Provable Approaches to High Dimensional Unsupervised Learning.
- Creator
-
Rahmani, Mostafa, Atia, George, Vosoughi, Azadeh, Mikhael, Wasfy, Nashed, M, Pensky, Marianna, University of Central Florida
- Abstract / Description
-
This doctoral thesis focuses on three popular unsupervised learning problems: subspace clustering, robust PCA, and column sampling. For the subspace clustering problem, a new transformative idea is presented. The proposed approach, termed Innovation Pursuit, is a new geometrical solution to the subspace clustering problem whereby subspaces are identified based on their relative novelties. A detailed mathematical analysis is provided establishing sufficient conditions for the proposed method...
Show moreThis doctoral thesis focuses on three popular unsupervised learning problems: subspace clustering, robust PCA, and column sampling. For the subspace clustering problem, a new transformative idea is presented. The proposed approach, termed Innovation Pursuit, is a new geometrical solution to the subspace clustering problem whereby subspaces are identified based on their relative novelties. A detailed mathematical analysis is provided establishing sufficient conditions for the proposed method to correctly cluster the data points. The numerical simulations with both real and synthetic data demonstrate that Innovation Pursuit notably outperforms the state-of-the-art subspace clustering algorithms. For the robust PCA problem, we focus on both the outlier detection and the matrix decomposition problems. For the outlier detection problem, we present a new algorithm, termed Coherence Pursuit, in addition to two scalable randomized frameworks for the implementation of outlier detection algorithms. The Coherence Pursuit method is the first provable and non-iterative robust PCA method which is provably robust to both unstructured and structured outliers. Coherence Pursuit is remarkably simple and it notably outperforms the existing methods in dealing with structured outliers. In the proposed randomized designs, we leverage the low dimensional structure of the low rank component to apply the robust PCA algorithm to a random sketch of the data as opposed to the full scale data. Importantly, it is analytically shown that the presented randomized designs can make the computation or sample complexity of the low rank matrix recovery algorithm independent of the size of the data. At the end, we focus on the column sampling problem. A new sampling tool, dubbed Spatial Random Sampling, is presented which performs the random sampling in the spatial domain. The most compelling feature of Spatial Random Sampling is that it is the first unsupervised column sampling method which preserves the spatial distribution of the data.
Show less - Date Issued
- 2018
- Identifier
- CFE0007083, ucf:52010
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007083
- Title
- Weighting Policies for Robust Unsupervised Ensemble Learning.
- Creator
-
Unlu, Ramazan, Xanthopoulos, Petros, Zheng, Qipeng, Rabelo, Luis, Yun, Hae-Bum, University of Central Florida
- Abstract / Description
-
The unsupervised ensemble learning, or consensus clustering, consists of finding the optimal com- bination strategy of individual partitions that is robust in comparison to the selection of an algorithmic clustering pool. Despite its strong properties, this approach assigns the same weight to the contribution of each clustering to the final solution. We propose a weighting policy for this problem that is based on internal clustering quality measures and compare against other modern approaches...
Show moreThe unsupervised ensemble learning, or consensus clustering, consists of finding the optimal com- bination strategy of individual partitions that is robust in comparison to the selection of an algorithmic clustering pool. Despite its strong properties, this approach assigns the same weight to the contribution of each clustering to the final solution. We propose a weighting policy for this problem that is based on internal clustering quality measures and compare against other modern approaches. Results on publicly available datasets show that weights can significantly improve the accuracy performance while retaining the robust properties. Since the issue of determining an appropriate number of clusters, which is a primary input for many clustering methods is one of the significant challenges, we have used the same methodology to predict correct or the most suitable number of clusters as well. Among various methods, using internal validity indexes in conjunction with a suitable algorithm is one of the most popular way to determine the appropriate number of cluster. Thus, we use weighted consensus clustering along with four different indexes which are Silhouette (SH), Calinski-Harabasz (CH), Davies-Bouldin (DB), and Consensus (CI) indexes. Our experiment indicates that weighted consensus clustering together with chosen indexes is a useful method to determine right or the most appropriate number of clusters in comparison to individual clustering methods (e.g., k-means) and consensus clustering. Lastly, to decrease the variance of proposed weighted consensus clustering, we borrow the idea of Markowitz portfolio theory and implement its core idea to clustering domain. We aim to optimize the combination of individual clustering methods to minimize the variance of clustering accuracy. This is a new weighting policy to produce partition with a lower variance which might be crucial for a decision maker. Our study shows that using the idea of Markowitz portfolio theory will create a partition with a less variation in comparison to traditional consensus clustering and proposed weighted consensus clustering.
Show less - Date Issued
- 2017
- Identifier
- CFE0006813, ucf:51786
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006813
- Title
- Training Neural Networks Through the Integration of Evolution and Gradient Descent.
- Creator
-
Morse, Gregory, Stanley, Kenneth, Wu, Annie, Shah, Mubarak, Wiegand, Rudolf, University of Central Florida
- Abstract / Description
-
Neural networks have achieved widespread adoption due to both their applicability to a wide range of problems and their success relative to other machine learning algorithms. The training of neural networks is achieved through any of several paradigms, most prominently gradient-based approaches (including deep learning), but also through up-and-coming approaches like neuroevolution. However, while both of these neural network training paradigms have seen major improvements over the past...
Show moreNeural networks have achieved widespread adoption due to both their applicability to a wide range of problems and their success relative to other machine learning algorithms. The training of neural networks is achieved through any of several paradigms, most prominently gradient-based approaches (including deep learning), but also through up-and-coming approaches like neuroevolution. However, while both of these neural network training paradigms have seen major improvements over the past decade, little work has been invested in developing algorithms that incorporate the advances from both deep learning and neuroevolution. This dissertation introduces two new algorithms that are steps towards the integration of gradient descent and neuroevolution for training neural networks. The first is (1) the Limited Evaluation Evolutionary Algorithm (LEEA), which implements a novel form of evolution where individuals are partially evaluated, allowing rapid learning and enabling the evolutionary algorithm to behave more like gradient descent. This conception provides a critical stepping stone to future algorithms that more tightly couple evolutionary and gradient descent components. The second major algorithm (2) is Divergent Discriminative Feature Accumulation (DDFA), which combines a neuroevolution phase, where features are collected in an unsupervised manner, with a gradient descent phase for fine tuning of the neural network weights. The neuroevolution phase of DDFA utilizes an indirect encoding and novelty search, which are sophisticated neuroevolution components rarely incorporated into gradient descent-based systems. Further contributions of this work that build on DDFA include (3) an empirical analysis to identify an effective distance function for novelty search in high dimensions and (4) the extension of DDFA for the purpose of discovering convolutional features. The results of these DDFA experiments together show that DDFA discovers features that are effective as a starting point for gradient descent, with significant improvement over gradient descent alone. Additionally, the method of collecting features in an unsupervised manner allows DDFA to be applied to domains with abundant unlabeled data and relatively sparse labeled data. This ability is highlighted in the STL-10 domain, where DDFA is shown to make effective use of unlabeled data.
Show less - Date Issued
- 2019
- Identifier
- CFE0007840, ucf:52819
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007840
- Title
- Online, Supervised and Unsupervised Action Localization in Videos.
- Creator
-
Soomro, Khurram, Shah, Mubarak, Heinrich, Mark, Hu, Haiyan, Bagci, Ulas, Yun, Hae-Bum, University of Central Florida
- Abstract / Description
-
Action recognition classifies a given video among a set of action labels, whereas action localization determines the location of an action in addition to its class. The overall aim of this dissertation is action localization. Many of the existing action localization approaches exhaustively search (spatially and temporally) for an action in a video. However, as the search space increases with high resolution and longer duration videos, it becomes impractical to use such sliding window...
Show moreAction recognition classifies a given video among a set of action labels, whereas action localization determines the location of an action in addition to its class. The overall aim of this dissertation is action localization. Many of the existing action localization approaches exhaustively search (spatially and temporally) for an action in a video. However, as the search space increases with high resolution and longer duration videos, it becomes impractical to use such sliding window techniques. The first part of this dissertation presents an efficient approach for localizing actions by learning contextual relations between different video regions in training. In testing, we use the context information to estimate the probability of each supervoxel belonging to the foreground action and use Conditional Random Field (CRF) to localize actions. In the above method and typical approaches to this problem, localization is performed in an offline manner where all the video frames are processed together. This prevents timely localization and prediction of actions/interactions - an important consideration for many tasks including surveillance and human-machine interaction. Therefore, in the second part of this dissertation we propose an online approach to the challenging problem of localization and prediction of actions/interactions in videos. In this approach, we use human poses and superpixels in each frame to train discriminative appearance models and perform online prediction of actions/interactions with Structural SVM. Above two approaches rely on human supervision in the form of assigning action class labels to videos and annotating actor bounding boxes in each frame of training videos. Therefore, in the third part of this dissertation we address the problem of unsupervised action localization. Given unlabeled videos without annotations, this approach aims at: 1) Discovering action classes using a discriminative clustering approach, and 2) Localizing actions using a variant of Knapsack problem.
Show less - Date Issued
- 2017
- Identifier
- CFE0006917, ucf:51685
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006917
- Title
- An Unsupervised Consensus Control Chart Pattern Recognition Framework.
- Creator
-
Haghtalab, Siavash, Xanthopoulos, Petros, Pazour, Jennifer, Rabelo, Luis, University of Central Florida
- Abstract / Description
-
Early identification and detection of abnormal time series patterns is vital for a number of manufacturing.Slide shifts and alterations of time series patterns might be indicative of some anomalyin the production process, such as machinery malfunction. Usually due to the continuous flow of data monitoring of manufacturing processes requires automated Control Chart Pattern Recognition(CCPR) algorithms. The majority of CCPR literature consists of supervised classification algorithms. Less...
Show moreEarly identification and detection of abnormal time series patterns is vital for a number of manufacturing.Slide shifts and alterations of time series patterns might be indicative of some anomalyin the production process, such as machinery malfunction. Usually due to the continuous flow of data monitoring of manufacturing processes requires automated Control Chart Pattern Recognition(CCPR) algorithms. The majority of CCPR literature consists of supervised classification algorithms. Less studies consider unsupervised versions of the problem. Despite the profound advantageof unsupervised methodology for less manual data labeling their use is limited due to thefact that their performance is not robust enough for practical purposes. In this study we propose the use of a consensus clustering framework. Computational results show robust behavior compared to individual clustering algorithms.
Show less - Date Issued
- 2014
- Identifier
- CFE0005178, ucf:50670
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005178
- Title
- DATA MINING METHODS FOR MALWARE DETECTION.
- Creator
-
Siddiqui, Muazzam, Wang, Morgan, University of Central Florida
- Abstract / Description
-
This research investigates the use of data mining methods for malware (malicious programs) detection and proposed a framework as an alternative to the traditional signature detection methods. The traditional approaches using signatures to detect malicious programs fails for the new and unknown malwares case, where signatures are not available. We present a data mining framework to detect malicious programs. We collected, analyzed and processed several thousand malicious and clean programs to...
Show moreThis research investigates the use of data mining methods for malware (malicious programs) detection and proposed a framework as an alternative to the traditional signature detection methods. The traditional approaches using signatures to detect malicious programs fails for the new and unknown malwares case, where signatures are not available. We present a data mining framework to detect malicious programs. We collected, analyzed and processed several thousand malicious and clean programs to find out the best features and build models that can classify a given program into a malware or a clean class. Our research is closely related to information retrieval and classification techniques and borrows a number of ideas from the field. We used a vector space model to represent the programs in our collection. Our data mining framework includes two separate and distinct classes of experiments. The first are the supervised learning experiments that used a dataset, consisting of several thousand malicious and clean program samples to train, validate and test, an array of classifiers. In the second class of experiments, we proposed using sequential association analysis for feature selection and automatic signature extraction. With our experiments, we were able to achieve as high as 98.4% detection rate and as low as 1.9% false positive rate on novel malwares.
Show less - Date Issued
- 2008
- Identifier
- CFE0002303, ucf:47870
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002303
- Title
- Sampling and Subspace Methods for Learning Sparse Group Structures in Computer Vision.
- Creator
-
Jaberi, Maryam, Foroosh, Hassan, Pensky, Marianna, Gong, Boqing, Qi, GuoJun, Pensky, Marianna, University of Central Florida
- Abstract / Description
-
The unprecedented growth of data in volume and dimension has led to an increased number of computationally-demanding and data-driven decision-making methods in many disciplines, such as computer vision, genomics, finance, etc. Research on big data aims to understand and describe trends in massive volumes of high-dimensional data. High volume and dimension are the determining factors in both computational and time complexity of algorithms. The challenge grows when the data are formed of the...
Show moreThe unprecedented growth of data in volume and dimension has led to an increased number of computationally-demanding and data-driven decision-making methods in many disciplines, such as computer vision, genomics, finance, etc. Research on big data aims to understand and describe trends in massive volumes of high-dimensional data. High volume and dimension are the determining factors in both computational and time complexity of algorithms. The challenge grows when the data are formed of the union of group-structures of different dimensions embedded in a high-dimensional ambient space.To address the problem of high volume, we propose a sampling method referred to as the Sparse Withdrawal of Inliers in a First Trial (SWIFT), which determines the smallest sample size in one grab so that all group-structures are adequately represented and discovered with high probability. The key features of SWIFT are: (i) sparsity, which is independent of the population size; (ii) no prior knowledge of the distribution of data, or the number of underlying group-structures; and (iii) robustness in the presence of an overwhelming number of outliers. We report a comprehensive study of the proposed sampling method in terms of accuracy, functionality, and effectiveness in reducing the computational cost in various applications of computer vision. In the second part of this dissertation, we study dimensionality reduction for multi-structural data. We propose a probabilistic subspace clustering method that unifies soft- and hard-clustering in a single framework. This is achieved by introducing a delayed association of uncertain points to subspaces of lower dimensions based on a confidence measure. Delayed association yields higher accuracy in clustering subspaces that have ambiguities, i.e. due to intersections and high-level of outliers/noise, and hence leads to more accurate self-representation of underlying subspaces. Altogether, this dissertation addresses the key theoretical and practically issues of size and dimension in big data analysis.
Show less - Date Issued
- 2018
- Identifier
- CFE0007017, ucf:52039
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007017
- Title
- PATTERNS OF MOTION: DISCOVERY AND GENERALIZED REPRESENTATION.
- Creator
-
Saleemi, Imran, Shah, Mubarak, University of Central Florida
- Abstract / Description
-
In this dissertation, we address the problem of discovery and representation of motion patterns in a variety of scenarios, commonly encountered in vision applications. The overarching goal is to devise a generic representation, that captures any kind of object motion observable in video sequences. Such motion is a significant source of information typically employed for diverse applications such as tracking, anomaly detection, and action and event recognition. We present statistical...
Show moreIn this dissertation, we address the problem of discovery and representation of motion patterns in a variety of scenarios, commonly encountered in vision applications. The overarching goal is to devise a generic representation, that captures any kind of object motion observable in video sequences. Such motion is a significant source of information typically employed for diverse applications such as tracking, anomaly detection, and action and event recognition. We present statistical frameworks for representation of motion characteristics of objects, learned from tracks or optical flow, for static as well as moving cameras, and propose algorithms for their application to a variety of problems. The proposed motion pattern models and learning methods are general enough to be employed in a variety of problems as we demonstrate experimentally. We first propose a novel method to model and learn the scene activity, observed by a static camera. The motion patterns of objects in the scene are modeled in the form of a multivariate non-parametric probability density function of spatiotemporal variables (object locations and transition times between them). Kernel Density Estimation (KDE) is used to learn this model in a completely unsupervised fashion. Learning is accomplished by observing the trajectories of objects by a static camera over extended periods of time. The model encodes the probabilistic nature of the behavior of moving objects in the scene and is useful for activity analysis applications, such as persistent tracking and anomalous motion detection. In addition, the model also captures salient scene features, such as, the areas of occlusion and most likely paths. Once the model is learned, we use a unified Markov Chain Monte-Carlo (MCMC) based framework for generating the most likely paths in the scene, improving foreground detection, persistent labelling of objects during tracking and deciding whether a given trajectory represents an anomaly to the observed motion patterns. Experiments with real world videos are reported which validate the proposed approach. The representation and estimation framework proposed above, however, has a few limitations. This algorithm proposes to use a single global statistical distribution to represent all kinds of motion observed in a particular scene. It therefore, does not find a separation between multiple semantically distinct motion patterns in the scene. Instead, the learned model is a joint distribution over all possible patterns followed by objects. To overcome this limitation, we then propose a superior method for the discovery and statistical representation of motion patterns in a scene. The advantages of this approach over the first one are two-fold: first, this model is applicable to scenes of dense crowded motion where tracking may not be feasible, and second, it distinguishes between motion patterns that are distinct at a semantic level of abstraction. We propose a mixture model representation of salient patterns of optical flow, and present an algorithm for learning these patterns from dense optical flow in a hierarchical, unsupervised fashion. Using low level cues of noisy optical flow, K-means is employed to initialize a Gaussian mixture model for temporally segmented clips of video. The components of this mixture are then filtered and instances of motion patterns are computed using a simple motion model, by linking components across space and time. Motion patterns are then initialized and membership of instances in different motion patterns is established by using KL divergence between mixture distributions of pattern instances. Finally, a pixel level representation of motion patterns is proposed by deriving conditional expectation of optical flow. Results of extensive experiments are presented for multiple surveillance sequences containing numerous patterns involving both pedestrian and vehicular traffic. The proposed method exploits optical flow as the low level feature and performs a hierarchical clustering to obtain motion patterns; and we observe that the use of optical flow is also an integral part of a variety of other vision applications, for example, as features based representation of human actions. We, therefore, propose a new representation for articulated human actions using the motion patterns. The representation is based on hierarchical clustering of observed optical flow in four dimensional, spatial and motion flow space. The automatically discovered motion patterns, are the primitive actions, representative of flow at salient regions on the human body, much like trajectories of body joints, which are notoriously difficult to obtain automatically. The proposed method works in a completely unsupervised fashion, and in sharp contrast to state of the art representations like bag of video words, provides a truly semantically meaningful representation. Each primitive action depicts the most atomic sub-action, like left arm moving upwards, or right leg moving downward and leftward, and is represented by a mixture of four dimensional Gaussian distributions. A sequence of primitive actions are discovered in the test video, and labelled by computing the KL divergence between mixtures. The entire video sequence containing the human action, is thus reduced to a simple string, which is matched against similar strings of training videos to classify the action. The string matching is performed by global alignment, using the well-known Needleman-Wunsch algorithm. Experiments reported on multiple human actions data sets, confirm the validity, simplicity, and semantically meaningful nature of the proposed representation. Results obtained are encouraging and comparable to the state of the art.
Show less - Date Issued
- 2011
- Identifier
- CFE0003646, ucf:48836
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003646