Current Search: Vehicular Network (x)
View All Items
- Title
- CONNECTIONLESS APPROACH A LOCALIZED SCHEME TO MOBILE AD HOC NETWORKS.
- Creator
-
Ho, Yao, Hua, Kien, University of Central Florida
- Abstract / Description
-
According to a Gartner Group (www.gartner.com) report in September 2008, the worldwide telecommunications market is on pace to reach $2 trillion in 2008. Gartner predicts that by 2012, the ratio of mobile to fixed connections will exceed 4-to-1. The North American mobile data market grew to 141.1 million connections in 2007, with a compound annual growth rate of 41.7 percent. It is believed that a large portion will be ad hoc and multi-hop connections, which will open many opportunities for...
Show moreAccording to a Gartner Group (www.gartner.com) report in September 2008, the worldwide telecommunications market is on pace to reach $2 trillion in 2008. Gartner predicts that by 2012, the ratio of mobile to fixed connections will exceed 4-to-1. The North American mobile data market grew to 141.1 million connections in 2007, with a compound annual growth rate of 41.7 percent. It is believed that a large portion will be ad hoc and multi-hop connections, which will open many opportunities for Mobile Ad hoc NETwork (MANET) applications and Wireless Mesh Network (WMN) applications. A MANET is a self-organizing multi-hop wireless network where all nodes participate in the routing and data forwarding process. Such a network can be easily deployed in situations where no base station is available, and a network must be build spontaneously. In applications such as battlefield communications, national crises, disaster recovery, and sensor deployment, a wired network is not available and ad hoc networks provide the only feasible means of communications and information access. Ad hoc networks have also become commonplace for gaming, conferencing, electronic classrooms, and particularly vehicle-to-vehicle communications. A Wireless mash network (WMN) is collection of mesh clients and mesh nodes (routers), with mesh nodes forming the backbone of the network and providing connection to the Internet and other network. Their rapid deployment and ease of maintenance are suitable for on-demand network such as disaster recovery, homeland security, convention centers, hard-to-wire buildings and unfriendly terrains. One important problem with MANET is the routing protocol that needs to work well not just with a small network, but also sustain efficiency and scalability as the network gets expanded and the application transmits data in greater volume. In such an environment, mobility, channel error, and congestion are the main causes for packet loss. Due to mobility of mobile hosts, addressing frequent and unpredictable topology changes is fundamental to MANET research. Two general approaches have been considered: connection-oriented approach and connectionless-oriented approach. In the former, the emphasis is on how to reconnect quickly with low overhead when a broken link occurs. Examples of this approach includes , , , , , , , , , and . In contrast, connectionless-oriented approach focuses on minimizing the occurrence of broken links. We proposed one such scheme called Connectionless Approach (CLA) and . In CLA, the network area is divided into non-overlapping grid cells, each serving as a virtual router. Any physical router (i.e., mobile host), currently inside a virtual router, can help forward the data packet to the next virtual router along the virtual link. This process is repeated until the packet reaches its final destination. Since a virtual link is based on virtual routers which do not move, it is much more robust than physical links used in the connection-oriented techniques. Simulation results in our previous works and , based on GloMoSim , indicate that CLA performs significantly better than connection-oriented techniques (i.e., AODV, DSR, LAR, GRID, TMNR, and GPSR). The contribution of this work consists of investigating and developing new Connectionless-Oriented Approach for Mobile Ad Hoc Network. Two of the greatest impacts of this research are as follows. First, the new approach is targeted towards robustly support high mobility and large scale environment which has been adapted for vehicle-to-vehicle environment in . Second, the detailed simulations which compare eight representative routing protocols, namely AODV, DSR, LAR, GRID, TMNR, GPSR, CBF, and CLA, under high-mobility environments. As many important emergent applications of the technology involved high-mobility nodes, very little is known about the existing routing methods perform relative to each other in high-mobility environments. The simulation results provide insight into ad hoc routing protocols and offer guidelines for mobile ad hoc network applications. Next, we enhanced and extend the connectionless-oriented approach. The current connectionless-oriented approach, however, may suffer from packet drops since traffic congestion is not considered in the packet forwarding policy. We address this weakness by considering the connectionless-oriented approach with a collision avoidance routing technique. After that, we investigate techniques to enforce collaboration among mobile devices in supporting the virtual router functionality. Many works have been published to combat such problem - misbehaving nodes are detected and a routing algorithm is employed to avoid and penalize misbehaving nodes. These techniques, however, cannot be applied to the connectionless-oriented approach since any node in the general direction towards the destination node can potentially help forward the data packets. To address the security and cooperation issues for connectionless-oriented approach, we introduce a cooperation enforcement technique called 3CE (3-Counter Enforcement). In addition, wireless mesh networks have become increasingly popular in recent years. Wireless mash network (WMNs) are collection of mesh clients and mesh nodes (routers), with mesh nodes forming the backbone of the network and providing connection to the Internet and other network. We propose a paradigm that combines virtual routers and mesh nodes to create a hybrid network call VR-Mesh Network. This hybrid network can reduce number of mesh node needed without decrease the performance of the network.
Show less - Date Issued
- 2009
- Identifier
- CFE0002742, ucf:48146
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002742
- Title
- Virtual Router Approach for Wireless Ad Hoc Networks.
- Creator
-
Ho, Ai, Hua, Kien, Guha, Ratan, Moshell, Jack, Zou, Changchun, Wang, Ching, University of Central Florida
- Abstract / Description
-
Wireless networks have become increasingly popular in recent years. There are two variations of mobile wireless networks: infrastructure mobile networks and infrastructureless mobile networks. The latter are also known as mobile ad hoc network (MANET). MANETs have no fixed routers. Instead, mobile nodes function as relay nodes or routers, which discover and maintain communication connections between source nodes and destination nodes for various data transmission sessions. In other words, an...
Show moreWireless networks have become increasingly popular in recent years. There are two variations of mobile wireless networks: infrastructure mobile networks and infrastructureless mobile networks. The latter are also known as mobile ad hoc network (MANET). MANETs have no fixed routers. Instead, mobile nodes function as relay nodes or routers, which discover and maintain communication connections between source nodes and destination nodes for various data transmission sessions. In other words, an MANET is a self-organizing multi-hop wireless network in which all nodes within a given geographical area participate in the routing and data forwarding process. Such networks are scalable and self-healing. They support mobile applications where an infrastructure is either not available (e.g., rescue operations and underground networks) or not desirable (e.g., harsh industrial environments).In many ad hoc networks such as vehicular networks, links among nodes change constantly and rapidly due to high node speed. Maintaining communication links of an established communication path that extends between source and destination nodes is a significant challenge in mobile ad hoc networks due to movement of the mobile nodes. In particular, such communication links are often broken under a high mobility environment. Communication links can also be broken by obstacles such as buildings in a street environment that block radio signal. In a street environment, obstacles and fast moving nodes result in a very short window of communication between nodes on different streets. Although a new communication route can be established when a break in the communication path occurs, repeatedly reestablishing new routes incurs delay and substantial overhead. To address this limitation, we introduce the Virtual Router abstraction in this dissertation. A virtual router is a dynamically-created logical router that is associated with a particular geographical area. Its routing functionality is provided by the physical nodes (i.e., mobile devices) currently within the geographical region served by the virtual router. These physical nodes take turns in forwarding data packets for the virtual router. In this environment, data packets are transmitted from a source node to a destination node over a series of virtual routers. Since virtual routers do not move, this scheme is much less susceptible to node mobility. There can be two virtual router approaches: Static Virtual Router (SVR) and Dynamic Virtual Router (DVR). In SVR, the virtual routers are predetermined and shared by all communication sessions over time. This scheme requires each mobile node to have a map of the virtual routers, and use a global positioning system (GPS) to determine if the node is within the geographical region of a given router. DVR is different from SVR with the following distinctions: (1) virtual routers are dynamically created for each communication sessions as needed, and deprecated after their use; (2) mobile nodes do not need to have a GPS; and (3) mobile nodes do not need to know whereabouts of the virtual routers.In this dissertation, we apply Virtual Router approach to address mobility challenges in routing data. We first propose a data routing protocol that uses SVR to overcome the extreme fast topology change in a street environment. We then propose a routing protocol that does not require node locations by adapting a DVR approach. We also explore how the Virtual Router Approach can reduce the overhead associated with initial route or location requests used by many existing routing protocols to find a destination. An initial request for a destination is expensive because all the nodes need to be reached to locate the destination. We propose two broadcast protocols; one in an open terrain environment and the other in a street environment. Both broadcast protocols apply SVR. We provide simulation results to demonstrate the effectiveness of the proposed protocols in handling high mobility. They show Virtual Router approach can achieve several times better performance than traditional routing and broadcast approach based on physical routers (i.e., relay nodes).
Show less - Date Issued
- 2011
- Identifier
- CFE0004119, ucf:49090
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004119
- Title
- Networking and security solutions for VANET initial deployment stage.
- Creator
-
Aslam, Baber, Zou, Changchun, Turgut, Damla, Bassiouni, Mostafa, Wang, Chung-Ching, University of Central Florida
- Abstract / Description
-
Vehicular ad hoc network (VANET) is a special case of mobile networks, where vehicles equipped with computing/communicating devices (called (")smart vehicles(")) are the mobile wireless nodes. However, the movement pattern of these mobile wireless nodes is no more random, as in case of mobile networks, rather it is restricted to roads and streets. Vehicular networks have hybrid architecture; it is a combination of both infrastructure and infrastructure-less architectures. The direct vehicle...
Show moreVehicular ad hoc network (VANET) is a special case of mobile networks, where vehicles equipped with computing/communicating devices (called (")smart vehicles(")) are the mobile wireless nodes. However, the movement pattern of these mobile wireless nodes is no more random, as in case of mobile networks, rather it is restricted to roads and streets. Vehicular networks have hybrid architecture; it is a combination of both infrastructure and infrastructure-less architectures. The direct vehicle to vehicle (V2V) communication is infrastructure-less or ad hoc in nature. Here the vehicles traveling within communication range of each other form an ad hoc network. On the other hand, the vehicle to infrastructure (V2I) communication has infrastructure architecture where vehicles connect to access points deployed along roads. These access points are known as road side units (RSUs) and vehicles communicate with other vehicles/wired nodes through these RSUs. To provide various services to vehicles, RSUs are generally connected to each other and to the Internet. The direct RSU to RSU communication is also referred as I2I communication. The success of VANET depends on the existence of pervasive roadside infrastructure and sufficient number of smart vehicles. Most VANET applications and services are based on either one or both of these requirements. A fully matured VANET will have pervasive roadside network and enough vehicle density to enable VANET applications. However, the initial deployment stage of VANET will be characterized by the lack of pervasive roadside infrastructure and low market penetration of smart vehicles. It will be economically infeasible to initially install a pervasive and fully networked roadside infrastructure, which could result in the failure of applications and services that depend on V2I or I2I communications. Further, low market penetration means there are insufficient number of smart vehicles to enable V2V communication, which could result in failure of services and applications that depend on V2V communications. Non-availability of pervasive connectivity to certification authorities and dynamic locations of each vehicle will make it difficult and expensive to implement security solutions that are based on some central certificate management authority. Non-availability of pervasive connectivity will also affect the backend connectivity of vehicles to the Internet or the rest of the world. Due to economic considerations, the installation of roadside infrastructure will take a long time and will be incremental thus resulting in a heterogeneous infrastructure with non-consistent capabilities. Similarly, smart vehicles will also have varying degree of capabilities. This will result in failure of applications and services that have very strict requirements on V2I or V2V communications. We have proposed several solutions to overcome the challenges described above that will be faced during the initial deployment stage of VANET. Specifically, we have proposed: 1) a VANET architecture that can provide services with limited number of heterogeneous roadside units and smart vehicles with varying capabilities, 2) a backend connectivity solution that provides connectivity between the Internet and smart vehicles without requiring pervasive roadside infrastructure or large number of smart vehicles, 3) a security architecture that does not depend on pervasive roadside infrastructure or a fully connected V2V network and fulfills all the security requirements, and 4) optimization solutions for placement of a limited number of RSUs within a given area to provide best possible service to smart vehicles. The optimal placement solutions cover both urban areas and highways environments.
Show less - Date Issued
- 2012
- Identifier
- CFE0004186, ucf:48993
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004186
- Title
- Scalable Map Information Dissemination for Connected and Automated Vehicle Systems.
- Creator
-
Gani, S M Osman, Pourmohammadi Fallah, Yaser, Vosoughi, Azadeh, Yuksel, Murat, Chatterjee, Mainak, Hasan, Samiul, University of Central Florida
- Abstract / Description
-
Situational awareness in connected and automated vehicle (CAV) systems becomes particularly challenging in the presence of non-line of sight objects and/or objects beyond the sensing range of local onboard sensors. Despite the fact that fully autonomous driving requires the use of multiple redundant sensor systems, primarily including camera, radar, and LiDAR, the non-line of sight object detection problem still persists due to the inherent limitations of those sensing techniques. To tackle...
Show moreSituational awareness in connected and automated vehicle (CAV) systems becomes particularly challenging in the presence of non-line of sight objects and/or objects beyond the sensing range of local onboard sensors. Despite the fact that fully autonomous driving requires the use of multiple redundant sensor systems, primarily including camera, radar, and LiDAR, the non-line of sight object detection problem still persists due to the inherent limitations of those sensing techniques. To tackle this challenge, the inter-vehicle communication system is envisioned that allows vehicles to exchange self-status updates aiming to extend their effective field of view and thus compensate for the limitations of the vehicle tracking subsystem that relies substantially on onboard sensing devices. Tracking capability in such systems can be further improved through the cooperative sharing of locally created map data instead of transmitting only self-update messages containing core basic safety message (BSM) data. In the cooperative sharing of safety messages, it is imperative to have a scalable communication protocol to ensure optimal use of the communication channel. This dissertation contributes to the analysis of the scalability issue in vehicle-to-everything (V2X) communication and then addresses the range issue of situational awareness in CAV systems by proposing a content-adaptive V2X communication architecture. To that end, we first analyze the BSM scheduling protocol standardized in the SAE J2945/1 and present large-scale scalability results obtained from a high-fidelity simulation platform to demonstrate the protocol's efficacy to address the scalability issues in V2X communication. By employing a distributed opportunistic approach, the SAE J2945/1 congestion control algorithm keeps the overall offered channel load within an optimal operating range, while meeting the minimum tracking requirements set forth by upper-layer applications. This scheduling protocol allows event-triggered and vehicle-dynamics driven message transmits that further the situational awareness in a cooperative V2X context. Presented validation results of the congestion control algorithm include position tracking errors as the performance measure, with the age of communicated information as the evaluation measure. In addition, we examine the optimality of the default settings of the congestion control parameters. Comprehensive analysis and trade-off study of the control parameters reveal some areas of improvement to further the algorithm's efficacy. Motivated by the effectiveness of channel congestion control mechanism, we further investigate message content and length adaptations, together with transmit rate control. Reasonably, the content of the exchanged information has a significant impact on the map accuracy in cooperative driving systems. We investigate different content control schemes for a communication architecture aimed at map sharing and evaluate their performance in terms of position tracking error. This dissertation determines that message content should be concentrated to mapped objects that are located farther away from the sender to the edge of the local sensor range. This dissertation also finds that optimized combination of message length and transmit rate ensures the optimal channel utilization for cooperative vehicular communication, which in turn improves the situational awareness of the whole system.
Show less - Date Issued
- 2019
- Identifier
- CFE0007634, ucf:52470
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007634