Current Search: Video on Demand (x)
View All Items
- Title
- INTERACTIVITY AND USER-HETEROGENEITY IN ON DEMAND BROADCAST VIDEO.
- Creator
-
Tantaoui El Araki, Mounir, Hua, Kien A., University of Central Florida
- Abstract / Description
-
Video-On-Demand (VOD) has appeared as an important technology for many multimedia applications such as news on demand, digital libraries, home entertainment, and distance learning. In its simplest form, delivery of a video stream requires a dedicated channel for each video session. This scheme is very expensive and non-scalable. To preserve server bandwidth, many users can share a channel using multicast. Two types of multicast have been considered. In a non-periodic multicast setting, users...
Show moreVideo-On-Demand (VOD) has appeared as an important technology for many multimedia applications such as news on demand, digital libraries, home entertainment, and distance learning. In its simplest form, delivery of a video stream requires a dedicated channel for each video session. This scheme is very expensive and non-scalable. To preserve server bandwidth, many users can share a channel using multicast. Two types of multicast have been considered. In a non-periodic multicast setting, users make video requests to the server; and it serves them according to some scheduling policy. In a periodic broadcast environment, the server does not wait for service requests. It broadcasts a video cyclically, e.g., a new stream of the same video is started every t seconds. Although, this type of approach does not guarantee true VOD, the worst service latency experienced by any client is less than t seconds. A distinct advantage of this approach is that it can serve a very large community of users using minimal server bandwidth. In VOD System it is desirable to provide the user with the video-cassette-recorder-like (VCR) capabilities such as fast-forwarding a video or jumping to a specific frame. This issue in the broadcast framework is addressed, where each video and its interactive version are broadcast repeatedly on the network. Existing techniques rely on data prefetching as the mechanism to provide this functionality. This approach provides limited usability since the prefetching rate cannot keep up with typical fast-forward speeds. In the same environment, end users might have access to different bandwidth capabilities at different times. Current periodic broadcast schemes, do not take advantage of high-bandwidth capabilities, nor do they adapt to the low-bandwidth limitation of the receivers. A heterogeneous technique is presented that can adapt to a range of receiving bandwidth capability. Given a server bandwidth and a range of different client bandwidths, users employing the proposed technique will choose either to use their full reception bandwidth capability and therefore accessing the video at a very short time, or using part or enough reception bandwidth at the expense of a longer access latency.
Show less - Date Issued
- 2004
- Identifier
- CFE0000085, ucf:46129
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000085
- Title
- A FRAMEWORK FOR EFFICIENT DATA DISTRIBUTION IN PEER-TO-PEER NETWORKS.
- Creator
-
Purandare, Darshan, Guha, Ratan, University of Central Florida
- Abstract / Description
-
Peer to Peer (P2P) models are based on user altruism, wherein a user shares its content with other users in the pool and it also has an interest in the content of the other nodes. Most P2P systems in their current form are not fair in terms of the content served by a peer and the service obtained from swarm. Most systems suffer from free rider's problem where many high uplink capacity peers contribute much more than they should while many others get a free ride for downloading the content...
Show morePeer to Peer (P2P) models are based on user altruism, wherein a user shares its content with other users in the pool and it also has an interest in the content of the other nodes. Most P2P systems in their current form are not fair in terms of the content served by a peer and the service obtained from swarm. Most systems suffer from free rider's problem where many high uplink capacity peers contribute much more than they should while many others get a free ride for downloading the content. This leaves high capacity nodes with very little or no motivation to contribute. Many times such resourceful nodes exit the swarm or don't even participate. The whole scenario is unfavorable and disappointing for P2P networks in general, where participation is a must and a very important feature. As the number of users increases in the swarm, the swarm becomes robust and scalable. Other important issues in the present day P2P system are below optimal Quality of Service (QoS) in terms of download time, end-to-end latency and jitter rate, uplink utilization, excessive cross ISP traffic, security and cheating threats etc. These current day problems in P2P networks serve as a motivation for present work. To this end, we present an efficient data distribution framework in Peer-to-Peer (P2P) networks for media streaming and file sharing domain. The experiments with our model, an alliance based peering scheme for media streaming, show that such a scheme distributes data to the swarm members in a near-optimal way. Alliances are small groups of nodes that share data and other vital information for symbiotic association. We show that alliance formation is a loosely coupled and an effective way to organize the peers and our model maps to a small world network, which form efficient overlay structures and are robust to network perturbations such as churn. We present a comparative simulation based study of our model with CoolStreaming/DONet (a popular model) and present a quantitative performance evaluation. Simulation results show that our model scales well under varying workloads and conditions, delivers near optimal levels of QoS, reduces cross ISP traffic considerably and for most cases, performs at par or even better than Cool-Streaming/DONet. In the next phase of our work, we focussed on BitTorrent P2P model as it the most widely used file sharing protocol. Many studies in academia and industry have shown that though BitTorrent scales very well but is far from optimal in terms of fairness to end users, download time and uplink utilization. Furthermore, random peering and data distribution in such model lead to suboptimal performance. Lately, new breed of BitTorrent clients like BitTyrant have shown successful strategic attacks against BitTorrent. Strategic peers configure the BitTorrent client software such that for very less or no contribution, they can obtain good download speeds. Such strategic nodes exploit the altruism in the swarm and consume resources at the expense of other honest nodes and create an unfair swarm. More unfairness is generated in the swarm with the presence of heterogeneous bandwidth nodes. We investigate and propose a new token-based anti-strategic policy that could be used in BitTorrent to minimize the free-riding by strategic clients. We also proposed other policies against strategic attacks that include using a smart tracker that denies the request of strategic clients for peer listmultiple times, and black listing the non-behaving nodes that do not follow the protocol policies. These policies help to stop the strategic behavior of peers to a large extent and improve overall system performance. We also quantify and validate the benefits of using bandwidth peer matching policy. Our simulations results show that with the above proposed changes, uplink utilization and mean download time in BitTorrent network improves considerably. It leaves strategic clients with little or no incentive to behave greedily. This reduces free riding and creates fairer swarm with very little computational overhead. Finally, we show that our model is self healing model where user behavior changes from selfish to altruistic in the presence of the aforementioned policies.
Show less - Date Issued
- 2008
- Identifier
- CFE0002260, ucf:47864
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002260
- Title
- SEARCH AND DELIVERY TECHNIQUES IN PEER-TO-PEER NETWORKS.
- Creator
-
Do, Tai, Hua, Kien, University of Central Florida
- Abstract / Description
-
The presence of millions of interconnected personal computing devices has given rise to a new class of decentralized networking applications, which are loosely labeled as peer-to-peer (P2P) applications. These P2P applications leverage resources such as processing cycles, storage, content, and network bandwidth available to the user devices, which are also known as peers. A number of current systems - SETI@home, Napster, BitTorrent, and Pastry - are examples of these emerging P2P systems. To...
Show moreThe presence of millions of interconnected personal computing devices has given rise to a new class of decentralized networking applications, which are loosely labeled as peer-to-peer (P2P) applications. These P2P applications leverage resources such as processing cycles, storage, content, and network bandwidth available to the user devices, which are also known as peers. A number of current systems - SETI@home, Napster, BitTorrent, and Pastry - are examples of these emerging P2P systems. To fully realize the potential of the peer-to-peer technology, there is a need to define and provide a set of core competencies, serving as the basic services upon which various peer-to-peer applications can be built on. Among these core competencies, this dissertation focuses on two fundamental services, which are search and delivery. In the first part of the dissertation, delivery techniques to support video-on-demand services in wireline and wireless P2P networks are investigated. Video services are considered due to two reasons. First, video services are the pivotal basis for many other multimedia applications. Second, it is challenging to provide on-demand video services due to asynchronous playback progresses at peers. The proposed techniques enable efficient video sharing between peers with asynchronous playback progresses, and maximize peer bandwidth utilization. In the second part of the dissertation, the problem of supporting continuous moving range queries in wireless mobile peer-to-peer networks is studied. Continuous moving range queries have a number of applications when a moving object wants to monitor its surrounding environment for a period of time. When a fixed network infrastructure is not available, wireless mobile peer-to-peer networks become a viable option to support the continuous query system. The proposed distributed solution ensures the accuracy of the query results under realistic assumptions, and incurs much less overhead than alternative solutions.
Show less - Date Issued
- 2009
- Identifier
- CFE0002753, ucf:48111
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002753
- Title
- UTILIZING EDGE IN IOT AND VIDEO STREAMING APPLICATIONS TO REDUCE BOTTLENECKS IN INTERNET TRAFFIC.
- Creator
-
Akpinar, Kutalmis, Hua, Kien, Zou, Changchun, Turgut, Damla, Wang, Jun, University of Central Florida
- Abstract / Description
-
There is a large increase in the surge of data over Internet due to the increasing demand on multimedia content. It is estimated that 80% of Internet traffic will be video by 2022, according to a recent study. At the same time, IoT devices on Internet will double the human population. While infrastructure standards on IoT are still nonexistent, enterprise solutions tend to encourage cloud-based solutions, causing an additional surge of data over the Internet. This study proposes solutions to...
Show moreThere is a large increase in the surge of data over Internet due to the increasing demand on multimedia content. It is estimated that 80% of Internet traffic will be video by 2022, according to a recent study. At the same time, IoT devices on Internet will double the human population. While infrastructure standards on IoT are still nonexistent, enterprise solutions tend to encourage cloud-based solutions, causing an additional surge of data over the Internet. This study proposes solutions to bring video traffic and IoT computation back to the edges of the network, so that costly Internet infrastructure upgrades are not necessary. An efficient way to prevent the Internet surge over the network for IoT is to push the application specific computation to the edge of the network, close to where the data is generated, so that large data can be eliminated before being delivered to the cloud. In this study, an event query language and processing environment is provided to process events from various devices. The query processing environment brings the application developers, sensor infrastructure providers and end users together. It uses boolean events as the streaming and processing units. This addresses the device heterogeneity and pushes the data-intense tasks to the edge of network.The second focus of the study is Video-on-Demand applications. A characteristic of VoD traffic is its high redundancy. Due to the demand on popular content, the same video traffic flows through Internet Service Provider's network as overlapping but separate streams. In previous studies on redundancy elimination, overlapping streams are merged into each other in link-level by receiving the packet only for the first stream, and re-using it for the subsequent duplicated streams. In this study, we significantly improve these techniques by introducing a merger-aware routing method.Our final focus is increasing utilization of Content Delivery Network (CDN) servers on the edge of network to reduce the long-distance traffic. The proposed system uses Software Defined Networks (SDN) to route adaptive video streaming clients to the best available CDN servers in terms of network availability. While performing the network assistance, the system does not reveal the video request information to the network provider, thus enabling privacy protection for encrypted streams. The request routing is performed in segment level for adaptive streaming. This enables to re-route the client to the best available CDN without an interruption if network conditions change during the stream.
Show less - Date Issued
- 2019
- Identifier
- CFE0007882, ucf:52774
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007882