Current Search: Water Management (x)
View All Items
- Title
- Stormwater Management for Urban Areas.
- Creator
-
Chancellor, Gerald L., Wanielista, Martin P., Engineering
- Abstract / Description
-
Florida Technological University College of Engineering Thesis; Stormwater management in urban areas is a major concern today. The problem of disposing of this stormwater runoff in a satisfactory manner is very difficult indeed. Both the quantity and quality aspects of the runoff must be dealt with to obtain a solution of this problem. The water quality of the runoff can vary depending upon the different land uses of the drainage basin. The quantity of the stormwater runoff also depends upon...
Show moreFlorida Technological University College of Engineering Thesis; Stormwater management in urban areas is a major concern today. The problem of disposing of this stormwater runoff in a satisfactory manner is very difficult indeed. Both the quantity and quality aspects of the runoff must be dealt with to obtain a solution of this problem. The water quality of the runoff can vary depending upon the different land uses of the drainage basin. The quantity of the stormwater runoff also depends upon the land uses, the rainfall intensity and duration of the storm. The traditional methods available for determining the quantity of the stormwater runoff are numerous. These traditional methods and recently developed mathematical simulation models are discussed in this paper. Prediction of the water quality of stormwater runoff is in its infancy. Several of the mathematical models have the capabilities of quality simulation, however, the simulation results are usually inconsistent with actual quality data. Of the simulation models currently in use, the EPA Storm Water Management Model is one of the most comprehensive models. Application and verification of these newly developed models is limited. The EPA Model was chosen to simulate the quantity and quality of a small urban drainage area. The study area chosen was an urban commercial section of the Lake Eola drainage basin. Physical data of the study area, such as ground slopes, storm swere sizes and locations and slopes were determined. This data was then utilized for simulations of actual rainfall events. Verification of the quantity and quality simulation results was performed with actual quantity and quality data obtained for these rainfall events. Quantity simulation was considered successful with good correlation between the simulated and actual runoff. Quality simulation was successful to a lesser degree, the conclusion being that further quality calibration of the Model was required. Correlation between actual and simulated stormwater quality was achieved to some extent. The lack of correlation was felt to be due to calibration of the Model.
Show less - Date Issued
- 1975
- Identifier
- CFR0008137, ucf:52951
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFR0008137
- Title
- WATER AND THE MOUNTAINS: MAYA WATER MANGEMENT AT CARACOL, BELIZE.
- Creator
-
Crandall, James, Chase, Arlen, University of Central Florida
- Abstract / Description
-
Water management techniques in the Southern Maya Lowlands are both regionally diverse and site specific. This thesis examines the water management strategies of the Classic Period Maya at the site of Caracol, Belize. While it is likely that elites at Caracol controlled the redistribution of resources, i.e. craft and agricultural products, it is probable that the production of agricultural resources and the maintenance of water resource acquisition took place on a more local level. In order to...
Show moreWater management techniques in the Southern Maya Lowlands are both regionally diverse and site specific. This thesis examines the water management strategies of the Classic Period Maya at the site of Caracol, Belize. While it is likely that elites at Caracol controlled the redistribution of resources, i.e. craft and agricultural products, it is probable that the production of agricultural resources and the maintenance of water resource acquisition took place on a more local level. In order to test this hypothesis, a sample of five reservoirs were examined through original research and situated in conjunction with past settlement studies - to determine the water storage capacity and likely function of different water management features throughout the built environment of Caracol. As a result, this thesis argues that the placement and construction of water management features - i.e., reservoirs - at the site of Caracol, Belize are indicative of specific landscape patterns which are expressed by a distinct vernacular construction style and are also a reflection of the socio-political organization present within the site during the Late Classic Period.
Show less - Date Issued
- 2009
- Identifier
- CFE0002652, ucf:48246
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002652
- Title
- A FORMAL STUDY OF APPLIED ANCIENT WATER MANAGEMENT TECHNIQUES IN THE PRESENT WATER CRISIS.
- Creator
-
Gonzalez Cruz, Jesann M, Callaghan, Michael, University of Central Florida
- Abstract / Description
-
Many areas of the world are experiencing the effects of the water crisis. The water crisis is a widespread phenomenon whereby many regions are experiencing a shortage of water, lacking access to clean potable water. This study uses existing literature to examine the ways in which the ecological knowledge of ancient civilizations can be applied to modern water management in attempt to address the current water crisis. The literature reviewed for this study, stemming from notable books and peer...
Show moreMany areas of the world are experiencing the effects of the water crisis. The water crisis is a widespread phenomenon whereby many regions are experiencing a shortage of water, lacking access to clean potable water. This study uses existing literature to examine the ways in which the ecological knowledge of ancient civilizations can be applied to modern water management in attempt to address the current water crisis. The literature reviewed for this study, stemming from notable books and peer reviewed journals, were published between 1882 and the present year. As part of a purposive sample, the following civilizations were chosen: Tenochtitlan (presently Mexico City), Angkor, and Petra. Past and present water management in the three locations are examined, as well as their impact on industry and social systems. Findings within the literature indicate that ancient methods of water management are able to provide water for populations of equal or greater size than their modern counterparts. Similarly, some studies have determined that modern water systems are problematic in their production of waste by-products, and inefficiency in water collection and distribution. The implications determined from the results of this study are discussed, as well as the limitations that arose throughout the review. The study seeks to fill the gap in literature connecting ancient water management techniques to modern practices, helping establish suggestions for reforms to address the current water crisis in the process.
Show less - Date Issued
- 2017
- Identifier
- CFH2000179, ucf:45969
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH2000179
- Title
- WATER SANITATION AND WASTE MANAGEMENT IN LATIN AMERICA, COLOMBIA, AND CARTAGENA: A STUDY OF THE RELATIONSHIP BETWEEN ENVIRONMENT, HEALTH, POVERTY, AND POLICY.
- Creator
-
Sullivan, Andrea K, Sadri, Houman A., Bledsoe, Robert, University of Central Florida
- Abstract / Description
-
The objective of this research is to identify the need for stricter environmental standards and regulations in three areas of study. Organized by their level of analysis, these areas are Latin America (at the System-Level-of Analysis), Colombia (at the State-Level-of-Analysis), and the city of Cartagena (at the Sub-National-Level of Analysis). This research was accomplished in two phases. The first involved conducting an exhaustive literature search of sources, germane to the objective,...
Show moreThe objective of this research is to identify the need for stricter environmental standards and regulations in three areas of study. Organized by their level of analysis, these areas are Latin America (at the System-Level-of Analysis), Colombia (at the State-Level-of-Analysis), and the city of Cartagena (at the Sub-National-Level of Analysis). This research was accomplished in two phases. The first involved conducting an exhaustive literature search of sources, germane to the objective, published in Spanish and English. The second featured a site inspection conducted over a 10-day period during the month of May 2016 to Cartagena, Colombia. The purpose of the site inspection was to interview locals and to photographically document waste disposal practices. The results of this research determined that government at all levels (system, state, and subnational) play a significant and sometimes determinant role in managing waste and water pollution that are responsible for health problems primarily among the poor; these health problems are discussed in detail. This research discovered that the lack of government intervention is responsible for reducing the efficacy of waste management and water sanitation services. This research concludes with a discussion of how proactive waste management and water sanitation policies and practices can have a significant benefit not only to improving health but also has significant economic, social and environmental benefits that may reach beyond local levels.
Show less - Date Issued
- 2016
- Identifier
- CFH2000150, ucf:45936
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH2000150
- Title
- Transforming the Aquatic Urban Landscape: Nutrient Status and Management of Stormwater Basins.
- Creator
-
Skovira, Lindsay, Bohlen, Patrick, Fauth, John, Wang, Dingbao, University of Central Florida
- Abstract / Description
-
Urbanization is a largely irreversible anthropogenic change that degrades environmental quality, including aquatic ecosystems. Stormwater ponds are a popular best management practice (BMP) to mitigate the effects of urban land use on downstream water bodies and contribute significantly to the total area of aquatic ecosystems in some urban watersheds. My research investigated the distribution of stormwater ponds and examined how different urban land uses influenced biophysicochemical...
Show moreUrbanization is a largely irreversible anthropogenic change that degrades environmental quality, including aquatic ecosystems. Stormwater ponds are a popular best management practice (BMP) to mitigate the effects of urban land use on downstream water bodies and contribute significantly to the total area of aquatic ecosystems in some urban watersheds. My research investigated the distribution of stormwater ponds and examined how different urban land uses influenced biophysicochemical conditions and management of those ponds in a rapidly developing suburban watershed in the Econlockhatchee River basin in Florida, USA. I evaluated limnological and ecological parameters in randomly-selected ponds distributed among three urban land-use classes: high-density residential, institutional, and roadways. Ecological measures included characterizing percentage cover and composition of littoral zone plant community and the extent of any algal mats. Limnological measures included physical parameters (pH, conductivity, dissolved oxygen, and clarity), and nutrient concentrations (nitrate, ammonium, total nitrogen, dissolved reactive phosphorus, total phosphorus, and chlorophyll a). I used a subjective management intensity index to compare pond management among land-use classes. Stormwater ponds represented 40.2% of the total area of non-forested freshwater systems in the watershed, and were dominated by residential land uses (43.7%), followed by roadways (14.7%), industrial (2.7%) and institutional (2.3%). Principal Component Analysis (PCA) revealed that ponds with higher total nitrogen (TN) and chlorophyll a (chla) concentrations had lower water clarity, and that both. TN and TP were positively correlated with chla. PCA scores for school ponds, which had the highest water clarity, differed significantly from those of expressway and residential ponds, along the first PCA axis. Repeated-measures analysis of variance showed that TN concentrations differed significantly between expressway and school ponds, with expressway ponds having TN concentrations 51.7% higher than schools. Both TP and TN varied differently through time in the different lands uses. Management intensity for removal of aquatic vegetation and algae was lower in school ponds than in expressway and residential ponds, and school ponds contained the highest abundance and diversity of vegetation. Different urban land uses had varying impacts on water quality, and more intense chemical use to control vegetation and algae was related to greater nutrient and chla concentrations and lower water clarity.
Show less - Date Issued
- 2016
- Identifier
- CFE0006845, ucf:51781
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006845
- Title
- Water and energy costs of landfilled food waste.
- Creator
-
Sarker, Tonmoy, Kibler, Kelly, Reinhart, Debra, Tatari, Omer, University of Central Florida
- Abstract / Description
-
Energy and water are consumed or contaminated during both the production and disposal of wasted food. To date, evaluations of water and energy resources associated with food waste have considered only resources used in food production. To allow for the full characterization of food waste within a Food Energy Water (FEW) nexus framework, this study addresses a fundamental knowledge gap related to the energy and water impacts of food waste after disposal. Fluxes of water and energy related to...
Show moreEnergy and water are consumed or contaminated during both the production and disposal of wasted food. To date, evaluations of water and energy resources associated with food waste have considered only resources used in food production. To allow for the full characterization of food waste within a Food Energy Water (FEW) nexus framework, this study addresses a fundamental knowledge gap related to the energy and water impacts of food waste after disposal. Fluxes of water and energy related to disposal of wasted food in landfills within the state of Florida were characterized. It is estimated that each metric ton (Mg) of landfilled food waste produces 18.1 kWh of energy, while the energy needed for collection, leachate transport, and treatment totals 126.5 kWh/Mg. These values equate to a net energy cost of 108.4 kWh/Mg, which is 110 Million kWh annually in Florida. It was observed that the water footprint of landfilled food waste is related to the assimilation of contaminated effluent and ranges from 2.5 to 58.5 m3 per metric ton of landfilled food waste, depending on the constituent of interest. Up to 58 Million m3 of water may be required annually to assimilate contamination related to landfilled food waste in Florida. We assessed the sensitivity of 14 variables used to estimate energy and water impacts and found that impacts are sensitive to the proportion of landfills collecting and utilizing landfill gas, concentration of constituents in leachate, and volume of effluent. Future research should be focused to improving the characterization of these influential parameters, and to similar FEW analysis of other food waste management technologies, such as composting or anaerobic digestion. Better understanding of water and energy impacts of food waste could inform societal decision making regarding investment in FEW-efficient waste management technologies.
Show less - Date Issued
- 2017
- Identifier
- CFE0006654, ucf:51233
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006654
- Title
- THE EFFECTS OF BAM AS AN ADSORPTIVE MEDIA ON PHOSPHORUS REMOVAL IN STORMWATER.
- Creator
-
Salamah, Sultan, Randall, Andrew, Duranceau, Steven, Chopra, Manoj, University of Central Florida
- Abstract / Description
-
To maintain the quality of receiving water bodies, it is desirable to remove total phosphorus (TP) in stormwater runoff. Many media filtration technologies have been developed to achieve TP and soluble reactive phosphorus (SRP) removal. Efficient media adsorption is essential to insure control of stormwater phosphorus inputs to the receiving water body. This project develops and analyzes a functionalized Biosorption Media (BAM) to remove phosphorus species from stormwater runoff. One goal of...
Show moreTo maintain the quality of receiving water bodies, it is desirable to remove total phosphorus (TP) in stormwater runoff. Many media filtration technologies have been developed to achieve TP and soluble reactive phosphorus (SRP) removal. Efficient media adsorption is essential to insure control of stormwater phosphorus inputs to the receiving water body. This project develops and analyzes a functionalized Biosorption Media (BAM) to remove phosphorus species from stormwater runoff. One goal of this project is to find the BAM values for coefficients such as maximum adsorption capacity (QM: 4.35E-05) for the media through SRP isotherm equilibrium experiments using the Langmuir and Freundlich models. In addition, an upflow column experiment was also performed to study BAM nutrient removal from stormwater runoff. Finally, the information from the isotherm and the column experiments are used to estimate the life expectancy or quantity required of the media, and to define the effectiveness of BAM in phosphorus removal. The result of this study shows that BAM is a feasible stormwater treatment that can remove 60% SRP and (>)40% TP at temperature between 21-23 (&)deg;C. The media is adequately modeled by both the Langmuir and the Freundlich models over the concentration range of interest in stormwater.
Show less - Date Issued
- 2014
- Identifier
- CFE0005244, ucf:50589
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005244
- Title
- Development of Treatment Train Techniques for the Evaluation of Low Impact Development in Urban Regions.
- Creator
-
Hardin, Mike, Wanielista, Martin, Cooper, David, Randall, Andrew, University of Central Florida
- Abstract / Description
-
Stormwater runoff from urban areas is a major source of pollution to surface water bodies. The discharge of nutrients such as nitrogen and phosphorus is particularly damaging as it results in harmful algal blooms which can limit the beneficial use of a water body. Stormwater best management practices (BMPs) have been developed over the years to help address this issue. While BMPs have been investigated for years, their use has been somewhat limited due to the fact that much of the data...
Show moreStormwater runoff from urban areas is a major source of pollution to surface water bodies. The discharge of nutrients such as nitrogen and phosphorus is particularly damaging as it results in harmful algal blooms which can limit the beneficial use of a water body. Stormwater best management practices (BMPs) have been developed over the years to help address this issue. While BMPs have been investigated for years, their use has been somewhat limited due to the fact that much of the data collected is for specific applications, in specific regions, and it is unknown how these systems will perform in other regions and for other applications. Additionally, the research was spread across the literature and performance data was not easily accessible or organized in a convenient way. Recently, local governments and the USEPA have begun to collect this data in BMP manuals to help designers implement this technology. That being said, many times a single BMP is insufficient to meet water quality and flood control needs in urban areas. A treatment train approach is required in these regions. In this dissertation, the development of methodologies to evaluate the performance of two BMPs, namely green roofs and pervious pavements is presented. Additionally, based on an extensive review of the literature, a model was developed to assist in the evaluation of site stormwater plans using a treatment train approach for the removal of nutrients due to the use of BMPs. This model is called the Best Management Practices Treatment for Removal on an Annual basis Involving Nutrients in Stormwater (BMPTRAINS) model.The first part of this research examined a previously developed method for designing green roofs for hydrologic efficiency. The model had not been tested for different designs and assumed that evapotranspiration was readily available for all regions. This work tested this methodology against different designs, both lab scale and full scale. Additionally, the use of the Blaney-Criddle equation was examined as a simple way to determine the ET for regions where data was not readily available. It was shown that the methods developed for determination of green roof efficiency had good agreement with collected data. Additionally, the use of the Blaney-Criddle equation for estimation of ET had good agreement with collected and measured data.The next part of this research examined a method to design pervious pavements. The water storage potential is essential to the successful design of these BMPs. This work examined the total and effective porosities under clean, sediment clogged, and rejuvenated conditions. Additionally, a new type of porosity was defined called operating porosity. This new porosity was defined as the average of the clean effective porosity and the sediment clogged effective porosity. This porosity term was created due to the fact that these systems exist in the exposed environment and subject to sediment loading due to site erosion, vehicle tracking, and spills. Due to this, using the clean effective porosity for design purposes would result in system failure for design type storm events towards the end of its service life. While rejuvenation techniques were found to be somewhat effective, it was also observed that often sediment would travel deep into the pavement system past the effective reach of vacuum sweeping. This was highly dependent on the pore structure of the pavement surface layer. Based on this examination, suggested values for operating porosity were presented which could be used to calculate the storage potential of these systems and subsequent curve number for design purposes.The final part of this work was the development of a site evaluation model using treatment train techniques. The BMPTRAINS model relied on an extensive literature review to gather data on performance of 15 different BMPs, including the two examined as part of this work. This model has 29 different land uses programmed into it and a user defined option, allowing for wide applicability. Additionally, this model allows a watershed to be split into up to four different catchments, each able to have their own distinct pre- and post-development conditions. Based on the pre- and post-development conditions specified by the user, event mean concentrations (EMCs) are assigned. These EMCs can also be overridden by the user. Each catchment can also contain up to three BMPs in series. If BMPs are to be in parallel, they must be in a separate catchment. The catchments can be configured in up to 15 different configurations, including series, parallel, and mixed. Again, this allows for wide applicability of site designs. The evaluation of cost is also available in this model, either in terms of capital cost or net present worth. The model allows for up to 25 different scenarios to be run comparing cost, presenting results in overall capital cost, overall net present worth, or cost per kg of nitrogen and phosphorus. The wide array of BMPs provided and the flexibility provided to the user makes this model a powerful tool for designers and regulators to help protect surface waters.
Show less - Date Issued
- 2014
- Identifier
- CFE0005503, ucf:50338
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005503
- Title
- Life-cycle Greenhouse Gas Emissions and Water Footprint of Residential Waste Collection and Management Systems.
- Creator
-
Maimoun, Mousa, Reinhart, Debra, McCauley, Pamela, Cooper, David, University of Central Florida
- Abstract / Description
-
Three troublesome issues concerning residential curbside collection (RCC) and municipal solid waste (MSW) management systems in the United States motivated this research. First, reliance upon inefficient collection and scheduling procedures negatively affect RCC efficiency, greenhouse gas (GHG) emissions, and cost. Second, the neglected impact of MSW management practices on water resources. Third, the implications of alternative fuels on the environmental and financial performance of waste...
Show moreThree troublesome issues concerning residential curbside collection (RCC) and municipal solid waste (MSW) management systems in the United States motivated this research. First, reliance upon inefficient collection and scheduling procedures negatively affect RCC efficiency, greenhouse gas (GHG) emissions, and cost. Second, the neglected impact of MSW management practices on water resources. Third, the implications of alternative fuels on the environmental and financial performance of waste collection where fuel plays a significant rule. The goal of this study was to select the best RCC program, MSW management practice, and collection fuel. For this study, field data were collected for RCC programs across the State of Florida. The garbage and recyclables generation rates were compared based on garbage collection frequency and use of dual-stream (DS) or single-stream (SS) recyclables collection system. The assessment of the collection programs was evaluated based on GHG emissions, while for the first time, the water footprint (WFP) was calculated for the most commonly used MSW management practices namely landfilling, combustion, and recycling. In comparing alternative collection fuels, two multi-criteria decision analysis (MCDA) tools, TOPSIS and SAW, were used to rank fuel alternatives for the waste collection industry with respect to a multi-level environmental and financial decision matrix. The results showed that SS collection systems exhibited more than a two-fold increase in recyclables generation rates, and a ~2.2-fold greater recycling efficiency compared to DS. The GHG emissions associated with the studied collection programs were estimated to be between 36 and 51 kg CO2eq per metric ton of total household waste (garbage and recyclables), depending on the garbage collection frequency, recyclables collection system (DS or SS) and recyclables compaction. When recyclables offsets were considered, the GHG emissions associated with programs using SS were estimated between -760 and -560, compared to between -270 and -210 kg CO2eq per metric ton of total waste for DS programs. In comparing the WFP of MSW management practices, the results showed that the WFP of waste landfilling can be reduced through implementing bioreactor landfilling. The WFP of electricity generated from waste combustion was less than the electricity from landfill gas. Overall, the WFP of electricity from MSW management practices was drastically less than some renewable energy sources. In comparing the WFP offsets of recyclables, the recycling of renewable commodities, e.g. paper, contributed to the highest WFP offsets compared to other commodities, mainly due to its raw material acquisition high WFPs. This suggests that recycling of renewable goods is the best management practice to reduce the WFP of MSW management. Finally, the MCDA of alternative fuel technologies revealed that diesel is still the best option, followed by hydraulic-hybrid waste collection vehicles (WCVs), then landfill gas (LFG) sourced natural gas, fossil natural gas and biodiesel. The elimination of the fueling station criterion from the financial criteria ranked LFG-sourced natural gas as the best option; suggesting that LFG sourced natural gas is the best alternative to fuel WCV when accessible. In conclusion, field data suggest that RCC system design can significantly impact recyclables generation rate and efficiency, and consequently determine environmental and economic impact of collection systems. The WFP concept was suggested as a method to systematically assess the impact of MSW management practices on water resources. A careful consideration of the WFP of MSW management practices and energy recovered from MSW management facilities is essential for the sustainable appropriation of water resources and development.
Show less - Date Issued
- 2015
- Identifier
- CFE0005656, ucf:50174
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005656
- Title
- Effluent Water Quality Improvement Using Silt Fences and Stormwater Harvesting.
- Creator
-
Gogo-Abite, Ikiensinma, Chopra, Manoj, Wanielista, Martin, Nam, Boo Hyun, Weishampel, John, University of Central Florida
- Abstract / Description
-
Construction sites are among the most common areas to experience soil erosion and sediment transport due to the mandatory foundation tasks such as excavation and land grubbing. Thus, temporary sediment barriers are installed along the perimeter to prevent sediment transport from the site. Erosion and sediment transport control measures may include, but not limited to, physical and chemical processes such as the use of a silt fence and polyacrylamide product. Runoff from construction sites and...
Show moreConstruction sites are among the most common areas to experience soil erosion and sediment transport due to the mandatory foundation tasks such as excavation and land grubbing. Thus, temporary sediment barriers are installed along the perimeter to prevent sediment transport from the site. Erosion and sediment transport control measures may include, but not limited to, physical and chemical processes such as the use of a silt fence and polyacrylamide product. Runoff from construction sites and other impervious surfaces are routinely discharged into ponds for treatment before being released into a receiving water body. Stormwater harvesting from a pond for irrigation of adjacent lands is promoted as one approach to reducing pond discharge while supplementing valuable potable water used for irrigation. The reduction of pond discharge reduces the mass of pollutants in the discharge. In the dissertation, presented is the investigation of the effectiveness of temporary sediment barriers and then, development of a modeling approach to a stormwater harvesting pond to provide a comprehensive stormwater management pollution reduction assessment tool.The first part of the research presents the investigation of the performance efficiencies of silt fence fabrics in turbidity and sediment concentration removal, and the determination of flow-through-rate on simulated construction sites in real time. Two silt fence fabrics, (1) woven and the other (2) nonwoven were subjected to material index property tests and a series of field-scale tests with different rainfall intensities and events for different embankment slopes on a tilting test-bed. Collected influent and effluent samples were analyzed for sediment concentration and turbidity, and the flow-through-rate for each fabric was evaluated. Test results revealed that the woven and nonwoven silt fence achieved 11 and 56 percent average turbidity reduction efficiency, respectively. Each fabric also achieved 20 and 56 percent average sediment concentration removal efficiency, respectively. Fabric flow-through-rates were functions of the rainfall intensity and embankment slope. The nonwoven fabric exhibited higher flow-through-rates than the woven fabric in both field-scale and laboratory tests.In the second part of the study, a Stormwater Harvesting and Assessment for Reduction of Pollution (SHARP) model was developed to predict operation of wet pond used for stormwater harvesting. The model integrates the interaction of surface water and groundwater in a catchment area. The SHARP model was calibrated and validated with actual pond water elevation data from a stormwater pond at Miramar Lakes, Miramar, Florida. Model evaluation showed adequate prediction of pond water elevation with root mean square error between 0.07 and 0.12 m; mean absolute error was between 0.018 and 0.07 m; and relative index of agreement was between 0.74 and 0.98 for both calibration and validation periods. The SHARP model is capable of assessing harvesting safe-yield and discharge from a pond, including the prediction of the percentage of runoff into a harvesting pond that is not discharged.The combination of silt fence and/or polyacrylamide PAM before stormwater harvesting pond in a treatment train for the reduction of pollutants from construction sites has the potential of significantly exceeding a performance standard of 85 percent reduction typically required by local authorities. In fact, the stringent requirement of equaling pre- and post-development pollutant loading is highly achievable by the treatment train approach. The significant contribution from the integration of the SHARP model to the treatment train is that real-time assessment of pollutant loading reduction by volume can be planned and controlled to achieve target performance standards.
Show less - Date Issued
- 2012
- Identifier
- CFE0004539, ucf:49244
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004539
- Title
- Integrating Spray Aeration and Granular Activated Carbon for Disinfection By-Product Control in a Potable Water System.
- Creator
-
Rodriguez, Angela, Duranceau, Steven, Lee, Woo Hyoung, Sadmani, A H M Anwar, University of Central Florida
- Abstract / Description
-
Public water systems add disinfectants in water treatment to inactivate microbial pathogens. Chlorine, when used as a disinfectant, reacts with natural organic matter in the water to form trihalomethane (THM) and haloacetic acid (HAA5) disinfection by-products (DBPs), which are suspected carcinogens. The Safe Drinking Water Act's Disinfectant and Disinfection By-Product (D/DBP) Rules were promulgated by the U.S. Environmental Protection Agency to regulate the amount of DBPs in water systems....
Show morePublic water systems add disinfectants in water treatment to inactivate microbial pathogens. Chlorine, when used as a disinfectant, reacts with natural organic matter in the water to form trihalomethane (THM) and haloacetic acid (HAA5) disinfection by-products (DBPs), which are suspected carcinogens. The Safe Drinking Water Act's Disinfectant and Disinfection By-Product (D/DBP) Rules were promulgated by the U.S. Environmental Protection Agency to regulate the amount of DBPs in water systems. Regulatory compliance is based on maximum contaminant levels (MCL), measured as a locational running annual average (LRAA), for total THM (TTHM) and HAA5 of 80 (&)#181;g/L and 60 (&)#181;g/L, respectively. Regulated DBPs, if consumed in excess of EPA's MCL standard over many years, may increase chronic health risks. In order to comply with the D/DBP Rules, the County of Maui Department of Water Supply (DWS) adopted two DBP control technologies. A GridBee(&)#174; spray-aeration process was place into DWS's Lower Kula water system's Brooks ground storage tank in February of 2013. In March of 2015 the second DBP control technology, granular activated carbon (GAC), was integrated into DWS's Pi'iholo surface water treatment plant. To investigate the integration effectiveness of GAC and spray-aeration into a water system for DBP control, DBP data was gathered from the system between August of 2011 and August 2016, and analyzed relative to cost and performance.Prior to the spray aeration and GAC integration, it was found that TTHM levels at the LRAA compliance site ranged between 58.5 (&)#181;g/L and 125 (&)#181;g/L (at times exceeding the MCL). Additionally, HAA5 levels at the LRAA compliance site ranged between 21.2 and 52.0 (&)#181;g/L. The concerted efforts of the GAC and GridBee(&)#174; system was found to reduce LRAA TTHM and HAA5 concentrations to 38.5 (&)#181;g/L and 20.5 (&)#181;g/L, respectively, in the Lower Kula system. Hypothesis testing utilizing t-Tests confirmed that TTHMs levels were controlled by the spray aeration system and the GAC was responsible for controlling HAA5 formation. Although TTHM levels were reduced by 58 percent, and HAA5 levels by 48 percent, the estimated cumulative annual operation and maintenance (O(&)M) cost of the two systems was $1,036,000. In light of the cost analysis, total organic carbon (TOC)-based models for predicting LRAA TTHM and HAA5 levels were developed as equation (i) and (ii), respectively:(i) TTHM (&)#181;g/L = (32.5 x (TOC ppm)) + 5.59, (ii) HAA5 (&)#181;g/L = (8.37 x (TOC ppm)) + 12.4.The TTHM model yielded an R2 of 0.93, and the HAA5 model had an R2 of 0.52. F-Tests comparing predicted LRAA TTHM and HAA5 levels to actual LRAA TTHM and HAA5 levels determined no statistically-significant difference. With the knowledge of how the GAC and spray aerator controlled DBPs in the water system, a cost-effective and practical treatment operating parameter was developed. The parameter, Pi'iholo water plant filter effluent TOC content, can serve as an indicator that operators would use to alter DBP treatment process flow set points to achieve cost-effective treatment. Furthermore, the significant annual cost contribution by the GAC, coupled with HAA5 levels below DWS's MCLG, led to the recommendation of variable frequency drive (VFD) pumps for the GAC system. The addition of VFD pumps should reduce the frequency of carbon change outs while preserving adequate HAA5 control in the system.
Show less - Date Issued
- 2016
- Identifier
- CFE0006841, ucf:52881
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006841
- Title
- An Assessment of Biosorption Activated Media for the Removal of Pollutants in Up-Flow Stormwater Treatment Systems.
- Creator
-
Hood, Andrew, Randall, Andrew, Wanielista, Martin, Chopra, Manoj, O'Reilly, Andrew, Moore, Sean, University of Central Florida
- Abstract / Description
-
Nitrogen and phosphorus are often the limiting nutrients for marine and freshwater systems respectively. Additionally, stormwater often contains elevated levels of pathogens which can pollute the receiving water body and impact reuse applications [1-4]. The reduction of limiting nutrients and pathogens is a common primary target for stormwater best management practices (BMPs) [5]. Traditional BMPs, such as retention/detention treatment ponds require large footprints and may not be practical...
Show moreNitrogen and phosphorus are often the limiting nutrients for marine and freshwater systems respectively. Additionally, stormwater often contains elevated levels of pathogens which can pollute the receiving water body and impact reuse applications [1-4]. The reduction of limiting nutrients and pathogens is a common primary target for stormwater best management practices (BMPs) [5]. Traditional BMPs, such as retention/detention treatment ponds require large footprints and may not be practical in ultra-urban environments where above ground space is limited. Upflow filters utilizing biosorption activated media (BAM) that can be placed underground offer a small footprint alternative. Additionally, BAM upflow filters can be installed at the discharge point of traditional stormwater ponds to provide further treatment. This research simulated stormwater that had already been treated for solids removal; thus, most of the nutrients and solids in the influent were assumed to be as non-settable suspended solids or dissolved solids. Three different BAM mixtures in an upflow filter configuration were compared for the parameters of nitrogen, phosphorus, total coliform, E. coli, and heterotrophic plate count (HPC). Additionally, genetic testing was conducted using Polymerase Chain Reaction (PCR), in conjunction with a nitrogen mass balance, to determine if Anammox was a significant player in the nitrogen removal. The columns were run at both 22-minute and 220-minute Empty Bed Contact Times (EBCTs). All the BAM mixtures analyzed were shown to be capable at the removal of nitrogen, phosphorus, and total coliform during both the 22-minute and 220-minute EBCTs, with BAM #1 having the highest removal performance for all three parameters during both EBCTs. All BAM mixtures experienced an increase in HPC. Additionally, PCR analysis confirmed the presence of Anammox in the biofilm and via mass balance it was determined that the biological nitrogen removal was due to Anammox and endogenous denitrification with Anammox being a significant mechanism.
Show less - Date Issued
- 2019
- Identifier
- CFE0007817, ucf:52875
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007817