Current Search: WindSat (x)
-
-
Title
-
SIMULATION AND STUDY OF THE STOKES VECTOR IN A PRECIPITATING ATMOSPHERE.
-
Creator
-
Adams, Ian, Jones, Linwood, University of Central Florida
-
Abstract / Description
-
Precipitation is a dominating quantity in microwave radiometry. The large emission and scattering signals of rain and ice, respectively, introduce large contributions to the measured brightness temperature. While this allows for accurate sensing of precipitation, it also results in degraded performance when retrieving other geophysical parameters, such as near-surface ocean winds. In particular, the retrieval of wind direction requires precise knowledge of polarization, and nonspherical...
Show morePrecipitation is a dominating quantity in microwave radiometry. The large emission and scattering signals of rain and ice, respectively, introduce large contributions to the measured brightness temperature. While this allows for accurate sensing of precipitation, it also results in degraded performance when retrieving other geophysical parameters, such as near-surface ocean winds. In particular, the retrieval of wind direction requires precise knowledge of polarization, and nonspherical particles can result in a change in the polarization of incident radiation. The aim of this dissertation is to investigate the polarizing effects of precipitation in the atmosphere, including the existence of a precipitation signal in the third Stokes parameter, and compare these effects with the current sensitivities of passive wind vector retrieval algorithms. Realistic simulated precipitation profiles give hydrometeor water contents which are input into a vector radiative transfer model. Brightness temperatures are produced within the model using a reverse Monte Carlo method. Results are produced at three frequencies of interest to microwave polarimetry, 10.7 GHz, 18.7 GHz, and 37.0 GHz, for the first 3 components of the Stokes vector.
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001644, ucf:47246
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001644
-
-
Title
-
INTER-SATELLITE MICROWAVE RADIOMETER CALIBRATION.
-
Creator
-
Hong, Liang, Jones, W. Linwood, University of Central Florida
-
Abstract / Description
-
The removal of systematic brightness temperature (Tb) biases is necessary when producing decadal passive microwave data sets for weather and climate research. It is crucial to achieve Tb measurement consistency among all satellites in a constellation as well as to maintain sustained calibration accuracy over the lifetime of each satellite sensor. In-orbit inter-satellite radiometric calibration techniques provide a long term, group-wise solution; however, since radiometers operate at...
Show moreThe removal of systematic brightness temperature (Tb) biases is necessary when producing decadal passive microwave data sets for weather and climate research. It is crucial to achieve Tb measurement consistency among all satellites in a constellation as well as to maintain sustained calibration accuracy over the lifetime of each satellite sensor. In-orbit inter-satellite radiometric calibration techniques provide a long term, group-wise solution; however, since radiometers operate at different frequencies and viewing angles, Tb normalizations are made before making intermediate comparisons of their near-simultaneous measurements. In this dissertation, a new approach is investigated to perform these normalizations from one satellite's measurements to another. It uses Taylor's series expansion around a source frequency to predict Tb of a desired frequency. The relationship between Tb's and frequencies are derived from simulations using an oceanic Radiative Transfer Model (RTM) over a wide variety of environmental conditions. The original RTM is built on oceanic radiative transfer theory. Refinements are made to the model by modifying and tuning algorithms for calculating sea surface emission, atmospheric emission and attenuations. Validations were performed with collocated WindSat measurements. This radiometric calibration approach is applied to establish an absolute brightness temperature reference using near-simultaneous pair-wise comparisons between a non-sun synchronous radiometer and two sun-synchronous polar-orbiting radiometers: the Tropical Rain Measurement Mission (TRMM) Microwave Imager (TMI), WindSat (on Coriolis) and Advanced Microwave Scanning Radiometer (AMSR) on Advanced Earth Observing System II (ADEOSII), respectively. Collocated measurements between WindSat and TMI as well as between AMSR and TMI, within selected 10 weeks in 2003 for each pair, are collected, filtered and applied in the cross calibration. AMSR is calibrated to WindSat using TMI as a transfer standard. Accuracy prediction and error source analysis are discussed along with calibration results. This inter-satellite radiometric calibration approach provides technical support for NASA's Global Precipitation Mission which relies on a constellation of cooperative satellites with a variety of microwave radiometers to make global rainfall measurements.
Show less
-
Date Issued
-
2008
-
Identifier
-
CFE0002003, ucf:47626
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002003
-
-
Title
-
Creating a Consistent Oceanic Multi-decadal Intercalibrated TMI-GMI Constellation Data Record.
-
Creator
-
Chen, Ruiyao, Jones, W Linwood, Mikhael, Wasfy, Wei, Lei, Wilheit, Thomas, McKague, Darren, University of Central Florida
-
Abstract / Description
-
The Tropical Rainfall Measuring Mission (TRMM), launched in late November 1997 into a low earth orbit, produced the longest microwave radiometric data time series of 17-plus years from the TRMM Microwave Imager (TMI). The Global Precipitation Measuring (GPM) mission is the follow-on to TRMM, designed to provide data continuity and advance precipitation measurement capabilities. The GPM Microwave Imager (GMI) performs as a brightness temperature (Tb) calibration standard for the intersatellite...
Show moreThe Tropical Rainfall Measuring Mission (TRMM), launched in late November 1997 into a low earth orbit, produced the longest microwave radiometric data time series of 17-plus years from the TRMM Microwave Imager (TMI). The Global Precipitation Measuring (GPM) mission is the follow-on to TRMM, designed to provide data continuity and advance precipitation measurement capabilities. The GPM Microwave Imager (GMI) performs as a brightness temperature (Tb) calibration standard for the intersatellite radiometric calibration (XCAL) for the other constellation members; and before GPM was launched, TMI was the XCAL standard. This dissertation aims at creating a consistent oceanic multi-decadal Tb data record that ensures an undeviating long-term precipitation record covering TRMM-GPM eras. As TMI and GMI share only a 13-month common operational period, the U.S. Naval Research Laboratory's WindSat radiometer, launched in 2003 and continuing today provides the calibration bridge between the two. TMI/WindSat XCAL for their (>)9 years' period, and WindSat/GMI XCAL for one year are performed using a robust technique developed by the Central Florida Remote Sensing Lab, named CFRSL XCAL Algorithm, to estimate the Tb bias of one relative to the other. The 3-way XCAL of GMI/TMI/WindSat for their joint overlap period is performed using an extended CFRSL XCAL algorithm. Thus, a multi-decadal oceanic Tb dataset is created. Moreover, an important feature of this dataset is a quantitative estimate of the Tb uncertainty derived from a generic Uncertainty Quantification Model (UQM). In the UQM, various sources contributing to the Tb bias are identified systematically. Next, methods for quantifying uncertainties from these sources are developed and applied individually. Finally, the resulting independent uncertainties are combined into a single overall uncertainty to be associated with the Tb bias on a channel basis. This dissertation work is remarkably important because it provides the science community with a consistent oceanic multi-decadal Tb data record, and also allows the science community to better understand the uncertainty in precipitation products based upon the Tb uncertainties provided.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0006987, ucf:51650
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006987
-
-
Title
-
VALIDATION OF QUICKSCAT RADIOMETER (QRAD) MICROWAVE BRIGHTNESS TEMPERTURE MEASURMENTS.
-
Creator
-
Hanna, Rafik, Jones, W.Linwood, University of Central Florida
-
Abstract / Description
-
After the launch of NASA's SeaWinds scatterometer in 1999, a radiometer function was implemented in the Science Ground Data Processing Systems to allow the measurement of the earth's microwave brightness temperature. This dissertation presents results of a comprehensive validation to assess the quality of QRad brightness temperature measurements using near-simultaneous ocean Tb comparisons between the SeaWinds on QuikSCAT (QRad) and WindSat polarimetric radiometer on Coriolis. WindSat...
Show moreAfter the launch of NASA's SeaWinds scatterometer in 1999, a radiometer function was implemented in the Science Ground Data Processing Systems to allow the measurement of the earth's microwave brightness temperature. This dissertation presents results of a comprehensive validation to assess the quality of QRad brightness temperature measurements using near-simultaneous ocean Tb comparisons between the SeaWinds on QuikSCAT (QRad) and WindSat polarimetric radiometer on Coriolis. WindSat was selected because it is a well calibrated radiometer that has many suitable collocations with QuikSCAT; and it has a 10.7 GHz channel, which is close to QRad frequency of 13.4 GHz. Brightness temperature normalizations were made for WindSat before comparison to account for expected differences in Tb with QRad because of incidence angle and channel frequency differences. Brightness temperatures for nine months during 2005 and 2006 were spatially collocated for rain-free homogeneous ocean scenes (match-ups) within 1° latitude x longitude boxes and within a ± 60 minute window. To ensure high quality comparison, these collocations were quality controlled and edited to remove non-homogenous ocean scenes and/or transient environmental conditions, including rain contamination. WindSat and QRad Tb's were averaged within 1° boxes and these were used for the radiometric inter-calibration analysis on a monthly basis. Results show that QRad calibrations are stable in the mean within ± 2K over the yearly seasonal cycle.
Show less
-
Date Issued
-
2009
-
Identifier
-
CFE0002820, ucf:48068
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002820
-
-
Title
-
SIMULATION OF BRIGHTNESS TEMPERATURES FOR THE MICROWAVE RADIOMETER ON THE AQUARIUS/SAC-D MISSION.
-
Creator
-
Khan, Salman, Jones, W. Linwood, University of Central Florida
-
Abstract / Description
-
Microwave radiometers are highly sensitive receivers capable of measuring low levels of natural blackbody microwave emissions. Remote sensing by satellite microwave radiometers flying on low-earth, polar orbiting, satellites can infer a variety of terrestrial and atmospheric geophysical parameters for scientific and operational applications, such as weather and climate prediction. The objective of this thesis is to provide realistic simulated ocean brightness temperatures for the 3-channel...
Show moreMicrowave radiometers are highly sensitive receivers capable of measuring low levels of natural blackbody microwave emissions. Remote sensing by satellite microwave radiometers flying on low-earth, polar orbiting, satellites can infer a variety of terrestrial and atmospheric geophysical parameters for scientific and operational applications, such as weather and climate prediction. The objective of this thesis is to provide realistic simulated ocean brightness temperatures for the 3-channel Microwave Radiometer (MWR), which will be launched in May 2010 on the joint NASA/CONAE Aquarius/SAC-D Mission. These data will be used for pre-launch geophysical retrieval algorithms development and validation testing. Analyses are performed to evaluate the proposed MWR measurement geometry and verify the requirements for spatial/temporal sampling. Finally, a preliminary study is performed for the post-launch inter-satellite radiometric calibration using the WindSat polarimetric radiometer on the Coriolis satellite.
Show less
-
Date Issued
-
2009
-
Identifier
-
CFE0002821, ucf:48074
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002821
-
-
Title
-
VALIDATION OF WIDEBAND OCEAN EMISSIVITY RADIATIVE TRANSFER MODEL.
-
Creator
-
Crofton, Sonya, Jones, Linwood, University of Central Florida
-
Abstract / Description
-
Radiative Transfer Models (RTM) have many applications in the satellite microwave remote sensing field, such as the retrieval of oceanic and atmospheric environmental parameters, including surface wind vectors and sea surface temperatures, integrated water vapor, cloud liquid, and precipitation. A key component of the ocean RTM is the emissivity model used to determine the brightness temperature (Tb) at the oceanÃÂ's surface. A new wideband ocean emissivity RTM...
Show moreRadiative Transfer Models (RTM) have many applications in the satellite microwave remote sensing field, such as the retrieval of oceanic and atmospheric environmental parameters, including surface wind vectors and sea surface temperatures, integrated water vapor, cloud liquid, and precipitation. A key component of the ocean RTM is the emissivity model used to determine the brightness temperature (Tb) at the oceanÃÂ's surface. A new wideband ocean emissivity RTM developed by the Central Florida Remote Sensing Laboratory (CFRSL) calculates ocean emissivity over a wide range of frequencies, incidence angles, sea surface temperatures (SST), and wind speed. This thesis presents the validation of this CFRSL model using independent WindSat Tb measurements collocated with Global Data Assimilation System (GDAS) Numerical weather model environmental parameters for frequencies between 6.8 to 37 GHz and wind speeds between 0 à20 m/s over the July 2005 àJune 2006 year. In addition, the CFRSL emissivity model is validated using WindSat derived ocean wind speeds and SST that are contained in the Environmental Data Record (EDR) and combined with the GDAS environmental parameters. Finally, the validation includes comparisons to the well-established XCAL ocean emissivity RTM. The focus of this validation and comparison is to assess performance of the emissivity model results with respect to a wide range of frequency and wind speeds but limited to a narrow range of incidence angles between approximately 50ð - 55ð.
Show less
-
Date Issued
-
2010
-
Identifier
-
CFE0003533, ucf:48946
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003533