Current Search: Wireless Networking (x)
View All Items
Pages
- Title
- DESIGN AND IMPLEMENTATION OF WIRELES SENSOR NETWORKS FOR PARKING MANAGEMENT SYSTEM.
- Creator
-
Kora, Sudhir, Phillips, Ronald, University of Central Florida
- Abstract / Description
-
The technology of wirelessly networked micro sensors promises to revolutionize the way we interact with the physical environment. A new approach to solve parking-related issues of vehicles in parking lots using wireless sensor networks is presented. This approach enables the implementation of the Parking Management System (PMS®) in public parking lots found in Airports, Commercial Buildings, Universities, etc. The design architecture of the sensor nodes is discussed here. An overall view...
Show moreThe technology of wirelessly networked micro sensors promises to revolutionize the way we interact with the physical environment. A new approach to solve parking-related issues of vehicles in parking lots using wireless sensor networks is presented. This approach enables the implementation of the Parking Management System (PMS®) in public parking lots found in Airports, Commercial Buildings, Universities, etc. The design architecture of the sensor nodes is discussed here. An overall view of the sensor network, which covers the whole of the parking lot, is also summarized. Detailed description of the software architecture that supports the hardware is provided. A sample experiment for detecting the movement of vehicles by placing the sensor nodes allowing vehicles to pass over it is performed. The readings are sent to a local database server, which gives an indication of the actual number of vehicles parked in the building at any time. This application-oriented project also identifies important areas of further work in power management, communication, collaborative signal processing and parking management.
Show less - Date Issued
- 2005
- Identifier
- CFE0000669, ucf:46522
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000669
- Title
- INTRUSION DETECTION IN WIRELESS SENSOR NETWORKS.
- Creator
-
NGUYEN, HONG NHUNG, Turgut, Damla, University of Central Florida
- Abstract / Description
-
There are several applications that use sensor motes and researchers continue to explore additional applications. For this particular application of detecting the movement of humans through the sensor field, a set of Berkley mica2 motes on TinyOS operating system is used. Different sensors such as pressure, light, and so on can be used to identify the presence of an intruder in the field. In our case, the light sensor is chosen for the detection. When an intruder crosses the monitored...
Show moreThere are several applications that use sensor motes and researchers continue to explore additional applications. For this particular application of detecting the movement of humans through the sensor field, a set of Berkley mica2 motes on TinyOS operating system is used. Different sensors such as pressure, light, and so on can be used to identify the presence of an intruder in the field. In our case, the light sensor is chosen for the detection. When an intruder crosses the monitored environment, the system detects the changes of the light values, and any significant change meaning that a change greater than a pre-defined threshold. This indicates the presence of an intruder. An integrated web cam is used to take snapshot of the intruder and transmit the picture through the network to a remote station. The basic motivation of this thesis is that a sensor web system can be used to monitor and detect any intruder in a specific area from a remote location.
Show less - Date Issued
- 2006
- Identifier
- CFE0001027, ucf:46793
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001027
- Title
- A ROBUST WIRELESS MESH ACCESS ENVIRONMENT FOR MOBILE VIDEO USERS.
- Creator
-
Xie, Fei, Hua, Kien, University of Central Florida
- Abstract / Description
-
The rapid advances in networking technology have enabled large-scale deployments of online video streaming services in todayÃÂ's Internet. In particular, wireless Internet access technology has been one of the most transforming and empowering technologies in recent years. We have witnessed a dramatic increase in the number of mobile users who access online video services through wireless access networks, such as wireless mesh networks and 3G cellular networks. Unlike in...
Show moreThe rapid advances in networking technology have enabled large-scale deployments of online video streaming services in todayÃÂ's Internet. In particular, wireless Internet access technology has been one of the most transforming and empowering technologies in recent years. We have witnessed a dramatic increase in the number of mobile users who access online video services through wireless access networks, such as wireless mesh networks and 3G cellular networks. Unlike in wired environment, using a dedicated stream for each video service request is very expensive for wireless networks. This simple strategy also has limited scalability when popular content is demanded by a large number of users. It is desirable to have a robust wireless access environment that can sustain a sudden spurt of interest for certain videos due to, say a current event. Moreover, due to the mobility of the video users, smooth streaming performance during the handoff is a key requirement to the robustness of the wireless access networks for mobile video users. In this dissertation, the author focuses on the robustness of the wireless mesh access (WMA) environment for mobile video users. Novel video sharing techniques are proposed to reduce the burden of video streaming in different WMA environments. The author proposes a cross-layer framework for scalable Video-on-Demand (VOD) service in multi-hop WiMax mesh networks. The author also studies the optimization problems for video multicast in a general wireless mesh networks. The WMA environment is modeled as a connected graph with a video source in one of the nodes and the video requests randomly generated from other nodes in the graph. The optimal video multicast problem in such environment is formulated as two sub-problems. The proposed solutions of the sub-problems are justified using simulation and numerical study. In the case of online video streaming, online video server does not cooperate with the access networks. In this case, the centralized data sharing technique fails since they assume the cooperation between the video server and the network. To tackle this problem, a novel distributed video sharing technique called Dynamic Stream Merging (DSM) is proposed. DSM improves the robustness of the WMA environment without the cooperation from the online video server. It optimizes the per link sharing performance with small time complexity and message complexity. The performance of DSM has been studied using simulations in Network Simulator 2 (NS2) as well as real experiments in a wireless mesh testbed. The Mobile YouTube website (http://m.youtube.com) is used as the online video website in the experiment. Last but not the least; a cross-layer scheme is proposed to avoid the degradation on the video quality during the handoff in the WMA environment. Novel video quality related triggers and the routing metrics at the mesh routers are utilized in the handoff decision making process. A redirection scheme is also proposed to eliminate packet loss caused by the handoff.
Show less - Date Issued
- 2010
- Identifier
- CFE0003241, ucf:48541
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003241
- Title
- Routing, Localization and Positioning Protocols for Wireless Sensor and Actor Networks.
- Creator
-
Akbas, Mustafa, Turgut, Damla, Boloni, Ladislau, Georgiopoulos, Michael, Brust, Matthias, Bassiouni, Mostafa, Zhao, Yue, University of Central Florida
- Abstract / Description
-
Wireless sensor and actor networks (WSANs) are distributed systems of sensor nodes and actors that are interconnected over the wireless medium. Sensor nodes collect information about the physical world and transmit the data to actors by using one-hop or multi-hop communications. Actors collect information from the sensor nodes, process the information, take decisions and react to the events.This dissertation presents contributions to the methods of routing, localization and positioning in...
Show moreWireless sensor and actor networks (WSANs) are distributed systems of sensor nodes and actors that are interconnected over the wireless medium. Sensor nodes collect information about the physical world and transmit the data to actors by using one-hop or multi-hop communications. Actors collect information from the sensor nodes, process the information, take decisions and react to the events.This dissertation presents contributions to the methods of routing, localization and positioning in WSANs for practical applications. We first propose a routing protocol with service differentiation for WSANs with stationary nodes. In this setting, we also adapt a sports ranking algorithm to dynamically prioritize the events in the environment depending on the collected data. We extend this routing protocol for an application, in which sensor nodes float in a river to gather observations and actors are deployed at accessible points on the coastline. We develop a method with locally acting adaptive overlay network formation to organize the network with actor areas and to collect data by using locality-preserving communication.We also present a multi-hop localization approach for enriching the information collected from the river with the estimated locations of mobile sensor nodes without using positioning adapters. As an extension to this application, we model the movements of sensor nodes by a subsurface meandering current mobility model with random surface motion. Then we adapt the introduced routing and network organization methods to model a complete primate monitoring system. A novel spatial cut-off preferential attachment model and center of mass concept are developed according to the characteristics of the primate groups. We also present a role determination algorithm for primates, which uses the collection of spatial-temporal relationships. We apply a similar approach to human social networks to tackle the problem of automatic generation and organization of social networks by analyzing and assessing interaction data. The introduced routing and localization protocols in this dissertation are also extended with a novel three dimensional actor positioning strategy inspired by the molecular geometry. Extensive simulations are conducted in OPNET simulation tool for the performance evaluation of the proposed protocols.
Show less - Date Issued
- 2013
- Identifier
- CFE0005292, ucf:50564
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005292
- Title
- Scalable Network Design and Management with Decentralized Software-defined Networking.
- Creator
-
Atwal, Kuldip Singh, Bassiouni, Mostafa, Fu, Xinwen, Zou, Changchun, Deo, Narsingh, University of Central Florida
- Abstract / Description
-
Network softwarization is among the most significant innovations of computer networks in the last few decades. The lack of uniform and programmable interfaces for network management led to the design of OpenFlow protocol for the university campuses and enterprise networks. This breakthrough coupled with other similar efforts led to an emergence of two complementary but independent paradigms called software-defined networking (SDN) and network function virtualization (NFV). As of this writing,...
Show moreNetwork softwarization is among the most significant innovations of computer networks in the last few decades. The lack of uniform and programmable interfaces for network management led to the design of OpenFlow protocol for the university campuses and enterprise networks. This breakthrough coupled with other similar efforts led to an emergence of two complementary but independent paradigms called software-defined networking (SDN) and network function virtualization (NFV). As of this writing, these paradigms are becoming the de-facto norms of wired and wireless networks alike. This dissertation mainly addresses the scalability aspect of SDN for multiple network types. Although centralized control and separation of control and data planes play a pivotal role for ease of network management, these concepts bring in many challenges as well. Scalability is among the most crucial challenges due to the unprecedented growth of computer networks in the past few years. Therefore, we strive to grapple with this problem in diverse networking scenarios and propose novel solutions by harnessing capabilities provided by SDN and other related technologies. Specifically, we present the techniques to deploy SDN at the Internet scale and to extend the concepts of softwarization for mobile access networks and vehicular networks. Multiple optimizations are employed to mitigate latency and other overheads that contribute to achieve performance gains. Additionally, by taking care of sparse connectivity and high mobility, the intrinsic constraints of centralization for wireless ad-hoc networks are addressed in a systematic manner. The state-of-the-art virtualization techniques are coupled with cloud computing methods to exploit the potential of softwarization in general and SDN in particular. Finally, by tapping into the capabilities of machine learning techniques, an SDN-based solution is proposed that inches closer towards the longstanding goal of self-driving networks. Extensive experiments performed on a large-scale testbed corroborates effectiveness of our approaches.
Show less - Date Issued
- 2019
- Identifier
- CFE0007600, ucf:52543
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007600
- Title
- Energy efficient routing towards a mobile sink using virtual coordinates in a wireless sensor network.
- Creator
-
Rahmatizadeh, Rouhollah, Boloni, Ladislau, Turgut, Damla, Jha, Sumit, University of Central Florida
- Abstract / Description
-
The existence of a coordinate system can often improve the routing in a wireless sensor network. While most coordinate systems correspond to the geometrical or geographical coordinates, in recent years researchers had proposed the use of virtual coordinates. Virtual coordinates depend only on the topology of the network as defined by the connectivity of the nodes, without requiring geographical information. The work in this thesis extends the use of virtual coordinates to scenarios where the...
Show moreThe existence of a coordinate system can often improve the routing in a wireless sensor network. While most coordinate systems correspond to the geometrical or geographical coordinates, in recent years researchers had proposed the use of virtual coordinates. Virtual coordinates depend only on the topology of the network as defined by the connectivity of the nodes, without requiring geographical information. The work in this thesis extends the use of virtual coordinates to scenarios where the wireless sensor network has a mobile sink. One reason to use a mobile sink is to distribute the energy consumption more evenly among the sensor nodes and thus extend the life-time of the network. We developed two algorithms, MS-DVCR and CU-DVCR which perform routing towards a mobile sink using virtual coordinates. In contrast to the baseline virtual coordinate routing MS-DVCR limits routing updates triggered by the sink movement to a local area around the sink. In contrast, CU-DVCR limits the route updates to a circular area on the boundary of the local area. We describe the design justification and the implementation of these algorithms. Using a set of experimental studies, we show that MS-DVCR and CU-DVCR achieve a lower energy consumption compared to the baseline virtual coordinate routing without any noticeable impact on routing performance. In addition, CU-DVCR provides a lower energy consumption than MS-DVCR for the case of a fast moving sink.
Show less - Date Issued
- 2014
- Identifier
- CFE0005402, ucf:50422
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005402
- Title
- MITIGATING MISBEHAVIOR IN WIRELESS NETWORKS: A GAME THEORETIC APPROACH.
- Creator
-
Wang, Wenjing, Chatterjee, Mainak, University of Central Florida
- Abstract / Description
-
In a distributed wireless system, multiple network nodes behave cooperatively towards a common goal. Though such assumptions on cooperation are desirable (e.g., controlling the transmit power level, reducing interference for each other, revealing private information, adhering to network policies) for analyzing and modeling, certain nodes belonging to a real-world system have often shown to deviate. These nodes, known as misbehaving nodes, bring more challenges to the design of the wireless...
Show moreIn a distributed wireless system, multiple network nodes behave cooperatively towards a common goal. Though such assumptions on cooperation are desirable (e.g., controlling the transmit power level, reducing interference for each other, revealing private information, adhering to network policies) for analyzing and modeling, certain nodes belonging to a real-world system have often shown to deviate. These nodes, known as misbehaving nodes, bring more challenges to the design of the wireless network because the unreliable channel makes the actions of the nodes hidden from each other. In this dissertation, we analyze two types of misbehavior, namely, selfish noncooperation and malicious attacking. We apply game theoretic techniques to model the interactions among the nodes in the network. First, we consider a homogeneous unreliable channel and analyze the necessary and sufficient conditions to enforce cooperative packet forwarding among a node pair. We formulate an anti-collusion game and derive the conditions that achieve full cooperation when the non-cooperative nodes collude. In addition, we consider multi-hop communication with a heterogeneous channel model. We refine our game model as a hidden action game with imperfect private monitoring. A state machine based strategy is proposed to reach Nash Equilibrium. The strategy attains cooperative packet forwarding with heterogeneous channel and requires only partial and imperfect information. Furthermore, it also enforces cooperation in multi-hop packet forwarding. To tackle the malicious attacks, we use Bayesian game analysis to show the existence of equilibrium in the detection game and argue that it might not be profitable to isolate the malicious nodes upon detection. We propose the concept of "coexistence with malicious nodes" by proving the co-existence equilibrium and derive the conditions that achieve the equilibrium. This research is further accomplished by extensive simulation studies. Simulation results illustrate the properties of the games and the derived equilibria. The results validate our design philosophy and clearly indicate that the proposed game theoretic solutions can be effectively used to enforce cooperation and mitigate attacks.
Show less - Date Issued
- 2010
- Identifier
- CFE0003080, ucf:48294
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003080
- Title
- Performance Evaluation of Connectivity and Capacity of Dynamic Spectrum Access Networks.
- Creator
-
Al-tameemi, Osama, Chatterjee, Mainak, Bassiouni, Mostafa, Jha, Sumit, Wei, Lei, Choudhury, Sudipto, University of Central Florida
- Abstract / Description
-
Recent measurements on radio spectrum usage have revealed the abundance of under- utilized bands of spectrum that belong to licensed users. This necessitated the paradigm shift from static to dynamic spectrum access (DSA) where secondary networks utilize unused spectrum holes in the licensed bands without causing interference to the licensed user. However, wide scale deployment of these networks have been hindered due to lack of knowledge of expected performance in realistic environments and...
Show moreRecent measurements on radio spectrum usage have revealed the abundance of under- utilized bands of spectrum that belong to licensed users. This necessitated the paradigm shift from static to dynamic spectrum access (DSA) where secondary networks utilize unused spectrum holes in the licensed bands without causing interference to the licensed user. However, wide scale deployment of these networks have been hindered due to lack of knowledge of expected performance in realistic environments and lack of cost-effective solutions for implementing spectrum database systems. In this dissertation, we address some of the fundamental challenges on how to improve the performance of DSA networks in terms of connectivity and capacity. Apart from showing performance gains via simulation experiments, we designed, implemented, and deployed testbeds that achieve economics of scale. We start by introducing network connectivity models and show that the well-established disk model does not hold true for interference-limited networks. Thus, we characterize connectivity based on signal to interference and noise ratio (SINR) and show that not all the deployed secondary nodes necessarily contribute towards the network's connectivity. We identify such nodes and show that even-though a node might be communication-visible it can still be connectivity-invisible. The invisibility of such nodes is modeled using the concept of Poisson thinning. The connectivity-visible nodes are combined with the coverage shrinkage to develop the concept of effective density which is used to characterize the con- nectivity. Further, we propose three techniques for connectivity maximization. We also show how traditional flooding techniques are not applicable under the SINR model and analyze the underlying causes for that. Moreover, we propose a modified version of probabilistic flooding that uses lower message overhead while accounting for the node outreach and in- terference. Next, we analyze the connectivity of multi-channel distributed networks and show how the invisibility that arises among the secondary nodes results in thinning which we characterize as channel abundance. We also capture the thinning that occurs due to the nodes' interference. We study the effects of interference and channel abundance using Poisson thinning on the formation of a communication link between two nodes and also on the overall connectivity of the secondary network. As for the capacity, we derive the bounds on the maximum achievable capacity of a randomly deployed secondary network with finite number of nodes in the presence of primary users since finding the exact capacity involves solving an optimization problem that shows in-scalability both in time and search space dimensionality. We speed up the optimization by reducing the optimizer's search space. Next, we characterize the QoS that secondary users can expect. We do so by using vector quantization to partition the QoS space into finite number of regions each of which is represented by one QoS index. We argue that any operating condition of the system can be mapped to one of the pre-computed QoS indices using a simple look-up in Olog (N) time thus avoiding any cumbersome computation for QoS evaluation. We implement the QoS space on an 8-bit microcontroller and show how the mathematically intensive operations can be computed in a shorter time. To demonstrate that there could be low cost solutions that scale, we present and implement an architecture that enables dynamic spectrum access for any type of network ranging from IoT to cellular. The three main components of this architecture are the RSSI sensing network, the DSA server, and the service engine. We use the concept of modular design in these components which allows transparency between them, scalability, and ease of maintenance and upgrade in a plug-n-play manner, without requiring any changes to the other components. Moreover, we provide a blueprint on how to use off-the-shelf commercially available software configurable RF chips to build low cost spectrum sensors. Using testbed experiments, we demonstrate the efficiency of the proposed architecture by comparing its performance to that of a legacy system. We show the benefits in terms of resilience to jamming, channel relinquishment on primary arrival, and best channel determination and allocation. We also show the performance gains in terms of frame error rater and spectral efficiency.
Show less - Date Issued
- 2016
- Identifier
- CFE0006063, ucf:50980
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006063
- Title
- A HYBRID ROUTING PROTOCOL FOR COMMUNICATIONS AMONG NODES WITHHIGH RELATIVE SPEED IN WIRELESS MESH NETWORKS.
- Creator
-
PEPPAS, NIKOLAOS, Turgut, Damla, University of Central Florida
- Abstract / Description
-
Wireless mesh networks (WMN) is a new promising wireless technology which uses already available hardware and software components. This thesis proposes a routing algorithm for military applications. More specifically, a specialized scenario consisting of a network of flying Unmanned Aerial Vehicles (UAVs) executing reconnaissance missions is investigated. The proposed routing algorithm is hybrid in nature and uses both reactive and proactive routing characteristics to transmit information....
Show moreWireless mesh networks (WMN) is a new promising wireless technology which uses already available hardware and software components. This thesis proposes a routing algorithm for military applications. More specifically, a specialized scenario consisting of a network of flying Unmanned Aerial Vehicles (UAVs) executing reconnaissance missions is investigated. The proposed routing algorithm is hybrid in nature and uses both reactive and proactive routing characteristics to transmit information. Through simulations run on a specially built stand alone simulator, based on Java, packet overhead, delivery ratio and latency metrics were monitored with respect to varying number of nodes, node density and mobility. The results showed that the high overhead leads to high delivery ratio while latency tends to increase as the network grows larger. All the metrics revealed sensitivity in high mobility conditions.
Show less - Date Issued
- 2007
- Identifier
- CFE0001607, ucf:47165
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001607
- Title
- AN ECONOMIC FRAMEWORK FOR RESOURCE MANAGEMENT AND PRICING IN WIRELESS NETWORKS WITH COMPETITIVE SERVICE PROVIDERS.
- Creator
-
SENGUPTA, SHAMIK, Chatterjee, Mainak, University of Central Florida
- Abstract / Description
-
A paradigm shift from static spectrum allocation to dynamic spectrum access (DSA) is becoming a reality due to the recent advances in cognitive radio, wide band spectrum sensing, and network aware real--time spectrum access. It is believed that DSA will allow wireless service providers (WSPs) the opportunity to dynamically access spectrum bands as and when they need it. Moreover, due to the presence of multiple WSPs in a region, it is anticipated that dynamic service pricing would be offered...
Show moreA paradigm shift from static spectrum allocation to dynamic spectrum access (DSA) is becoming a reality due to the recent advances in cognitive radio, wide band spectrum sensing, and network aware real--time spectrum access. It is believed that DSA will allow wireless service providers (WSPs) the opportunity to dynamically access spectrum bands as and when they need it. Moreover, due to the presence of multiple WSPs in a region, it is anticipated that dynamic service pricing would be offered that will allow the end-users to move from long-term service contracts to more flexible short-term service models. In this research, we develop a unified economic framework to analyze the trading system comprising two components: i) spectrum owner--WSPs interactions with regard to dynamic spectrum allocation, and ii) WSP--end-users interactions with regard to dynamic service pricing. For spectrum owner--WSPs interaction, we investigate various auction mechanisms for finding bidding strategies of WSPs and revenue generated by the spectrum owner. We show that sequential bidding provides better result than the concurrent bidding when WSPs are constrained to at most single unit allocation. On the other hand, when the bidders request for multiple units, (i.e., they are not restricted by allocation constraints) synchronous auction mechanism proves to be beneficial than asynchronous auctions. In this regard, we propose a winner determination sealed-bid knapsack auction mechanism that dynamically allocates spectrum to the WSPs based on their bids. As far as dynamic service pricing is concerned, we use game theory to capture the conflict of interest between WSPs and end--users, both of whom try to maximize their respective net utilities. We deviate from the traditional per--service static pricing towards a more dynamic model where the WSPs might change the price of a service almost on a session by session basis. Users, on the other hand, have the freedom to choose their WSP based on the price offered. It is found that in such a greedy and non-cooperative behavioral game model, it is in the best interest of the WSPs to adhere to a price threshold which is a consequence of a price (Nash) equilibrium. We conducted extensive simulation experiments, the results of which show that the proposed auction model entices WSPs to participate in the auction, makes optimal use of the common spectrum pool, and avoids collusion among WSPs. We also demonstrate how pricing can be used as an effective tool for providing incentives to the WSPs to upgrade their network resources and offer better services.
Show less - Date Issued
- 2007
- Identifier
- CFE0001848, ucf:47364
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001848
- Title
- MEDIUM ACCESS CONTROL PROTOCOLS AND ROUTING ALGORITHMS FOR WIRELESS SENSOR NETWORKS.
- Creator
-
Bag, Anirban, Bassiouni, Mostafa, University of Central Florida
- Abstract / Description
-
In recent years, the development of a large variety of mobile computing devices has led to wide scale deployment and use of wireless ad hoc and sensor networks. Wireless Sensor Networks consist of battery powered, tiny and cheap "motes", having sensing and wireless communication capabilities. Although wireless motes have limited battery power, communication and computation capabilities, the range of their application is vast. In the first part of the dissertation, we have addressed the...
Show moreIn recent years, the development of a large variety of mobile computing devices has led to wide scale deployment and use of wireless ad hoc and sensor networks. Wireless Sensor Networks consist of battery powered, tiny and cheap "motes", having sensing and wireless communication capabilities. Although wireless motes have limited battery power, communication and computation capabilities, the range of their application is vast. In the first part of the dissertation, we have addressed the specific application of Biomedical Sensor Networks. To solve the problem of data routing in these networks, we have proposed the Adaptive Least Temperature Routing (ALTR) algorithm that reduces the average temperature rise of the nodes in the in-vivo network while routing data efficiently. For delay sensitive biomedical applications, we proposed the Hotspot Preventing Routing (HPR) algorithm which avoids the formation of hotspots (regions having very high temperature) in the network. HPR forwards the packets using the shortest path, bypassing the regions of high temperature and thus significantly reduces the average packet delivery delay, making it suitable for real-time applications of in-vivo networks. We also proposed another routing algorithm suitable for being used in a network of id-less biomedical sensor nodes, namely Routing Algorithm for networks of homogeneous and Id-less biomedical sensor Nodes (RAIN). Finally we developed Biocomm, a cross-layer MAC and Routing protocol co-design for Biomedical Sensor Networks, which optimizes the overall performance of an in-vivo network through cross-layer interactions. We performed extensive simulations to show that the proposed Biocomm protocol performs much better than the other existing MAC and Routing protocols in terms of preventing the formation of hotspots, reducing energy consumption of nodes and preventing network congestion when used in an in-vivo network. In the second part of the dissertation, we have addressed the problems of habitat-monitoring sensor networks, broadcast algorithms for sensor networks and the congestion problem in sensor networks as well as one non-sensor network application, namely, on-chip communication networks. Specifically, we have proposed a variation of HPR algorithm, called Hotspot Preventing Adaptive Routing (HPAR) algorithm, for efficient data routing in Networks On-Chip catering to their specific hotspot prevention issues. A protocol similar to ALTR has been shown to perform well in a sensor network deployed for habitat monitoring. We developed a reliable, low overhead broadcast algorithm for sensor networks namely Topology Adaptive Gossip (TAG) algorithm. To reduce the congestion problem in Wireless Sensor Networks, we proposed a tunable cross-layer Congestion Reducing Medium Access Control (CRMAC) protocol that utilizes buffer status information from the Network layer to give prioritized medium access to congested nodes in the MAC layer and thus preventing congestion and packet drops. CRMAC can also be easily tuned to satisfy different application-specific performance requirements. With the help of extensive simulation results we have shown how CRMAC can be adapted to perform well in different applications of Sensor Network like Emergency Situation that requires a high network throughput and low packet delivery latency or Long-term Monitoring application requiring energy conservation.
Show less - Date Issued
- 2007
- Identifier
- CFE0001915, ucf:47480
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001915
- Title
- Modeling Crowd Mobility and Communication in Wireless Networks.
- Creator
-
Solmaz, Gurkan, Turgut, Damla, Bassiouni, Mostafa, Guha, Ratan, Goldiez, Brian, University of Central Florida
- Abstract / Description
-
This dissertation presents contributions to the fields of mobility modeling, wireless sensor networks (WSNs) with mobile sinks, and opportunistic communication in theme parks. The two main directions of our contributions are human mobility models and strategies for the mobile sink positioning and communication in wireless networks.The first direction of the dissertation is related to human mobility modeling. Modeling the movement of human subjects is important to improve the performance of...
Show moreThis dissertation presents contributions to the fields of mobility modeling, wireless sensor networks (WSNs) with mobile sinks, and opportunistic communication in theme parks. The two main directions of our contributions are human mobility models and strategies for the mobile sink positioning and communication in wireless networks.The first direction of the dissertation is related to human mobility modeling. Modeling the movement of human subjects is important to improve the performance of wireless networks with human participants and the validation of such networks through simulations. The movements in areas such as theme parks follow specific patterns that are not taken into consideration by the general purpose mobility models. We develop two types of mobility models of theme park visitors. The first model represents the typical movement of visitors as they are visiting various attractions and landmarks of the park. The second model represents the movement of the visitors as they aim to evacuate the park after a natural or man-made disaster.The second direction focuses on the movement patterns of mobile sinks and their communication in responding to various events and incidents within the theme park. When an event occurs, the system needs to determine which mobile sink will respond to the event and its trajectory. The overall objective is to optimize the event coverage by minimizing the time needed for the chosen mobile sink to reach the incident area. We extend this work by considering the positioning problem of mobile sinks and preservation of the connected topology. We propose a new variant of p-center problem for optimal placement and communication of the mobile sinks. We provide a solution to this problem through collaborative event coverage of the WSNs with mobile sinks. Finally, we develop a network model with opportunistic communication for tracking the evacuation of theme park visitors during disasters. This model involves people with smartphones that store and carry messages. The mobile sinks are responsible for communicating with the smartphones and reaching out to the regions of the emergent events.
Show less - Date Issued
- 2015
- Identifier
- CFE0006005, ucf:51024
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006005
- Title
- Networking and security solutions for VANET initial deployment stage.
- Creator
-
Aslam, Baber, Zou, Changchun, Turgut, Damla, Bassiouni, Mostafa, Wang, Chung-Ching, University of Central Florida
- Abstract / Description
-
Vehicular ad hoc network (VANET) is a special case of mobile networks, where vehicles equipped with computing/communicating devices (called (")smart vehicles(")) are the mobile wireless nodes. However, the movement pattern of these mobile wireless nodes is no more random, as in case of mobile networks, rather it is restricted to roads and streets. Vehicular networks have hybrid architecture; it is a combination of both infrastructure and infrastructure-less architectures. The direct vehicle...
Show moreVehicular ad hoc network (VANET) is a special case of mobile networks, where vehicles equipped with computing/communicating devices (called (")smart vehicles(")) are the mobile wireless nodes. However, the movement pattern of these mobile wireless nodes is no more random, as in case of mobile networks, rather it is restricted to roads and streets. Vehicular networks have hybrid architecture; it is a combination of both infrastructure and infrastructure-less architectures. The direct vehicle to vehicle (V2V) communication is infrastructure-less or ad hoc in nature. Here the vehicles traveling within communication range of each other form an ad hoc network. On the other hand, the vehicle to infrastructure (V2I) communication has infrastructure architecture where vehicles connect to access points deployed along roads. These access points are known as road side units (RSUs) and vehicles communicate with other vehicles/wired nodes through these RSUs. To provide various services to vehicles, RSUs are generally connected to each other and to the Internet. The direct RSU to RSU communication is also referred as I2I communication. The success of VANET depends on the existence of pervasive roadside infrastructure and sufficient number of smart vehicles. Most VANET applications and services are based on either one or both of these requirements. A fully matured VANET will have pervasive roadside network and enough vehicle density to enable VANET applications. However, the initial deployment stage of VANET will be characterized by the lack of pervasive roadside infrastructure and low market penetration of smart vehicles. It will be economically infeasible to initially install a pervasive and fully networked roadside infrastructure, which could result in the failure of applications and services that depend on V2I or I2I communications. Further, low market penetration means there are insufficient number of smart vehicles to enable V2V communication, which could result in failure of services and applications that depend on V2V communications. Non-availability of pervasive connectivity to certification authorities and dynamic locations of each vehicle will make it difficult and expensive to implement security solutions that are based on some central certificate management authority. Non-availability of pervasive connectivity will also affect the backend connectivity of vehicles to the Internet or the rest of the world. Due to economic considerations, the installation of roadside infrastructure will take a long time and will be incremental thus resulting in a heterogeneous infrastructure with non-consistent capabilities. Similarly, smart vehicles will also have varying degree of capabilities. This will result in failure of applications and services that have very strict requirements on V2I or V2V communications. We have proposed several solutions to overcome the challenges described above that will be faced during the initial deployment stage of VANET. Specifically, we have proposed: 1) a VANET architecture that can provide services with limited number of heterogeneous roadside units and smart vehicles with varying capabilities, 2) a backend connectivity solution that provides connectivity between the Internet and smart vehicles without requiring pervasive roadside infrastructure or large number of smart vehicles, 3) a security architecture that does not depend on pervasive roadside infrastructure or a fully connected V2V network and fulfills all the security requirements, and 4) optimization solutions for placement of a limited number of RSUs within a given area to provide best possible service to smart vehicles. The optimal placement solutions cover both urban areas and highways environments.
Show less - Date Issued
- 2012
- Identifier
- CFE0004186, ucf:48993
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004186
- Title
- Passive, Wireless SAW OFC Strain Sensor and Software Defined Radio Interrogator.
- Creator
-
Humphries, James, Malocha, Donald, Richie, Samuel, Weeks, Arthur, Sundaram, Kalpathy, Saha, Haripada, University of Central Florida
- Abstract / Description
-
Surface acoustic wave (SAW) devices have exhibited unique capabilities to meet the demands for many applications due to the inherent properties of SAW devices and piezoelectric materials. In particular, SAW devices have been adapted as sensors that can be configured to operate both passively and wirelessly. SAW sensors can be operated in harsh environmental extremes where typical sensor technologies are not able to operate. Because the sensors are passive, a radio transceiver is required to...
Show moreSurface acoustic wave (SAW) devices have exhibited unique capabilities to meet the demands for many applications due to the inherent properties of SAW devices and piezoelectric materials. In particular, SAW devices have been adapted as sensors that can be configured to operate both passively and wirelessly. SAW sensors can be operated in harsh environmental extremes where typical sensor technologies are not able to operate. Because the sensors are passive, a radio transceiver is required to interrogate the sensor and receive the reflected response that has been modulated by the SAW device. This dissertation presents the design of a passive, wireless SAW OFC strain sensor and software defined radio (SDR) interrogator.A SAW strain sensor has been designed and tested using orthogonal frequency coding (OFC) on YZ-LiNbO3. OFC for SAW devices has been previously developed at UCF and provides both frequency and time diversity in the RFID code as well as providing processing gain to improve the sensor SNR. Strain effects in SAW devices are discussed and two sensor embodiments are developed. The first embodiment is a cantilever structure and provides insight on how strain effects the SAW device. The second embodiment bonds the SAW die directly to a test structure to measure the strain on the structure. A commercial wired foil strain gage provides a performance comparison and shows that the wireless SAW sensor performs comparably. A commercial-off-the-shelf SDR platform has been employed as the SAW sensor interrogator. The Universal Software Radio Peripheral (USRP) is available in many embodiments and is capable of operation of to 6GHz and up to 160MHz of bandwidth. In particular, the USRP B200 is utilized as the RF transceiver platform. Custom FPGA modifications are discussed to fully utilize the USRP B200 bandwidth (56MHz) and synchronize the transmit and receive chains. External hardware has also been introduced to the B200 to improve RF performance, all of which are incorporated into a custom enclosure. Post-processing of the SAW sensor response is accomplished in Python using a matched filter correlator routine to extract sensor information. The system is demonstrated by interrogating wireless OFC SAW temperature and strain sensors at 915MHz.
Show less - Date Issued
- 2016
- Identifier
- CFE0006329, ucf:51560
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006329
- Title
- Virtual Router Approach for Wireless Ad Hoc Networks.
- Creator
-
Ho, Ai, Hua, Kien, Guha, Ratan, Moshell, Jack, Zou, Changchun, Wang, Ching, University of Central Florida
- Abstract / Description
-
Wireless networks have become increasingly popular in recent years. There are two variations of mobile wireless networks: infrastructure mobile networks and infrastructureless mobile networks. The latter are also known as mobile ad hoc network (MANET). MANETs have no fixed routers. Instead, mobile nodes function as relay nodes or routers, which discover and maintain communication connections between source nodes and destination nodes for various data transmission sessions. In other words, an...
Show moreWireless networks have become increasingly popular in recent years. There are two variations of mobile wireless networks: infrastructure mobile networks and infrastructureless mobile networks. The latter are also known as mobile ad hoc network (MANET). MANETs have no fixed routers. Instead, mobile nodes function as relay nodes or routers, which discover and maintain communication connections between source nodes and destination nodes for various data transmission sessions. In other words, an MANET is a self-organizing multi-hop wireless network in which all nodes within a given geographical area participate in the routing and data forwarding process. Such networks are scalable and self-healing. They support mobile applications where an infrastructure is either not available (e.g., rescue operations and underground networks) or not desirable (e.g., harsh industrial environments).In many ad hoc networks such as vehicular networks, links among nodes change constantly and rapidly due to high node speed. Maintaining communication links of an established communication path that extends between source and destination nodes is a significant challenge in mobile ad hoc networks due to movement of the mobile nodes. In particular, such communication links are often broken under a high mobility environment. Communication links can also be broken by obstacles such as buildings in a street environment that block radio signal. In a street environment, obstacles and fast moving nodes result in a very short window of communication between nodes on different streets. Although a new communication route can be established when a break in the communication path occurs, repeatedly reestablishing new routes incurs delay and substantial overhead. To address this limitation, we introduce the Virtual Router abstraction in this dissertation. A virtual router is a dynamically-created logical router that is associated with a particular geographical area. Its routing functionality is provided by the physical nodes (i.e., mobile devices) currently within the geographical region served by the virtual router. These physical nodes take turns in forwarding data packets for the virtual router. In this environment, data packets are transmitted from a source node to a destination node over a series of virtual routers. Since virtual routers do not move, this scheme is much less susceptible to node mobility. There can be two virtual router approaches: Static Virtual Router (SVR) and Dynamic Virtual Router (DVR). In SVR, the virtual routers are predetermined and shared by all communication sessions over time. This scheme requires each mobile node to have a map of the virtual routers, and use a global positioning system (GPS) to determine if the node is within the geographical region of a given router. DVR is different from SVR with the following distinctions: (1) virtual routers are dynamically created for each communication sessions as needed, and deprecated after their use; (2) mobile nodes do not need to have a GPS; and (3) mobile nodes do not need to know whereabouts of the virtual routers.In this dissertation, we apply Virtual Router approach to address mobility challenges in routing data. We first propose a data routing protocol that uses SVR to overcome the extreme fast topology change in a street environment. We then propose a routing protocol that does not require node locations by adapting a DVR approach. We also explore how the Virtual Router Approach can reduce the overhead associated with initial route or location requests used by many existing routing protocols to find a destination. An initial request for a destination is expensive because all the nodes need to be reached to locate the destination. We propose two broadcast protocols; one in an open terrain environment and the other in a street environment. Both broadcast protocols apply SVR. We provide simulation results to demonstrate the effectiveness of the proposed protocols in handling high mobility. They show Virtual Router approach can achieve several times better performance than traditional routing and broadcast approach based on physical routers (i.e., relay nodes).
Show less - Date Issued
- 2011
- Identifier
- CFE0004119, ucf:49090
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004119
- Title
- AN INTERACTIVE DISTRIBUTED SIMULATION FRAMEWORK WITH APPLICATION TO WIRELESS NETWORKS AND INTRUSION DETECTION.
- Creator
-
Kachirski, Oleg, Guha, Ratan, University of Central Florida
- Abstract / Description
-
In this dissertation, we describe the portable, open-source distributed simulation framework (WINDS) targeting simulations of wireless network infrastructures that we have developed. We present the simulation framework which uses modular architecture and apply the framework to studies of mobility pattern effects, routing and intrusion detection mechanisms in simulations of large-scale wireless ad hoc, infrastructure, and totally mobile networks. The distributed simulations within the...
Show moreIn this dissertation, we describe the portable, open-source distributed simulation framework (WINDS) targeting simulations of wireless network infrastructures that we have developed. We present the simulation framework which uses modular architecture and apply the framework to studies of mobility pattern effects, routing and intrusion detection mechanisms in simulations of large-scale wireless ad hoc, infrastructure, and totally mobile networks. The distributed simulations within the framework execute seamlessly and transparently to the user on a symmetric multiprocessor cluster computer or a network of computers with no modifications to the code or user objects. A visual graphical interface precisely depicts simulation object states and interactions throughout the simulation execution, giving the user full control over the simulation in real time. The network configuration is detected by the framework, and communication latency is taken into consideration when dynamically adjusting the simulation clock, allowing the simulation to run on a heterogeneous computing system. The simulation framework is easily extensible to multi-cluster systems and computing grids. An entire simulation system can be constructed in a short time, utilizing user-created and supplied simulation components, including mobile nodes, base stations, routing algorithms, traffic patterns and other objects. These objects are automatically compiled and loaded by the simulation system, and are available for dynamic simulation injection at runtime. Using our distributed simulation framework, we have studied modern intrusion detection systems (IDS) and assessed applicability of existing intrusion detection techniques to wireless networks. We have developed a mobile agent-based IDS targeting mobile wireless networks, and introduced load-balancing optimizations aimed at limited-resource systems to improve intrusion detection performance. Packet-based monitoring agents of our IDS employ a CASE-based reasoner engine that performs fast lookups of network packets in the existing SNORT-based intrusion rule-set. Experiments were performed using the intrusion data from MIT Lincoln Laboratories studies, and executed on a cluster computer utilizing our distributed simulation system.
Show less - Date Issued
- 2005
- Identifier
- CFE0000642, ucf:46545
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000642
- Title
- Energy Efficient and Secure Wireless Sensor Networks Design.
- Creator
-
Attiah, Afraa, Zou, Changchun, Chatterjee, Mainak, Wang, Jun, Yuksel, Murat, Wang, Chung-Ching, University of Central Florida
- Abstract / Description
-
ABSTRACTWireless Sensor Networks (WSNs) are emerging technologies that have the ability to sense,process, communicate, and transmit information to a destination, and they are expected to have significantimpact on the efficiency of many applications in various fields. The resource constraintsuch as limited battery power, is the greatest challenge in WSNs design as it affects the lifetimeand performance of the network. An energy efficient, secure, and trustworthy system is vital whena WSN...
Show moreABSTRACTWireless Sensor Networks (WSNs) are emerging technologies that have the ability to sense,process, communicate, and transmit information to a destination, and they are expected to have significantimpact on the efficiency of many applications in various fields. The resource constraintsuch as limited battery power, is the greatest challenge in WSNs design as it affects the lifetimeand performance of the network. An energy efficient, secure, and trustworthy system is vital whena WSN involves highly sensitive information. Thus, it is critical to design mechanisms that are energyefficient and secure while at the same time maintaining the desired level of quality of service.Inspired by these challenges, this dissertation is dedicated to exploiting optimization and gametheoretic approaches/solutions to handle several important issues in WSN communication, includingenergy efficiency, latency, congestion, dynamic traffic load, and security. We present severalnovel mechanisms to improve the security and energy efficiency of WSNs. Two new schemes areproposed for the network layer stack to achieve the following: (a) to enhance energy efficiencythrough optimized sleep intervals, that also considers the underlying dynamic traffic load and (b)to develop the routing protocol in order to handle wasted energy, congestion, and clustering. Wealso propose efficient routing and energy-efficient clustering algorithms based on optimization andgame theory. Furthermore, we propose a dynamic game theoretic framework (i.e., hyper defense)to analyze the interactions between attacker and defender as a non-cooperative security game thatconsiders the resource limitation. All the proposed schemes are validated by extensive experimentalanalyses, obtained by running simulations depicting various situations in WSNs in orderto represent real-world scenarios as realistically as possible. The results show that the proposedschemes achieve high performance in different terms, such as network lifetime, compared with thestate-of-the-art schemes.
Show less - Date Issued
- 2018
- Identifier
- CFE0006971, ucf:51672
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006971
- Title
- SPECTRUM SHARING AND SERVICE PRICING IN DYNAMIC SPECTRUM ACCESS NETWORKS.
- Creator
-
Brahma, Swastik, Chatterjee, Mainak, University of Central Florida
- Abstract / Description
-
Traditionally, radio spectrum has been statically allocated to wireless service providers (WSPs). Regulators, like FCC, give wireless service providers exclusive long term licenses for using specific range of frequencies in particular geographic areas. Moreover, restrictions are imposed on the technologies to be used and the services to be provided. The lack of flexibility in static spectrum allocation constrains the ability to make use of new technologies and the ability to redeploy the...
Show moreTraditionally, radio spectrum has been statically allocated to wireless service providers (WSPs). Regulators, like FCC, give wireless service providers exclusive long term licenses for using specific range of frequencies in particular geographic areas. Moreover, restrictions are imposed on the technologies to be used and the services to be provided. The lack of flexibility in static spectrum allocation constrains the ability to make use of new technologies and the ability to redeploy the spectrum to higher valued uses, thereby resulting in inefficient spectrum utilization [23, 38, 42, 62, 67]. These limitations have motivated a paradigm shift from static spectrum allocation towards a more 'liberalized' notion of spectrum management in which secondary users can borrow idle spectrum from primary spectrum licensees, without causing harmful interference to the latter- a notion commonly referred to as dynamic spectrum access (DSA) or open spectrum access ,. Cognitive radio [30, 47], empowered by Software Defined Radio (SDR), is poised to promote the efficient use of spectrum by adopting this open spectrum approach. In this dissertation, we first address the problem of dynamic channel (spectrum) access by a set of cognitive radio enabled nodes, where each node acting in a selfish manner tries to access and use as many channels as possible, subject to the interference constraints. We model the dynamic channel access problem as a modified Rubinstein-Stahl bargaining game. In our model, each node negotiates with the other nodes to obtain an agreeable sharing rule of the available channels, such that, no two interfering nodes use the same channel. We solve the bargaining game by finding Subgame Perfect Nash Equilibrium (SPNE) strategies of the nodes. First, we consider finite horizon version of the bargaining game and investigate its SPNE strategies that allow each node to maximize its utility against the other nodes (opponents). We then extend these results to the infinite horizon bargaining game. Furthermore, we identify Pareto optimal equilibria of the game for improving spectrum utilization. The bargaining solution ensures that no node is starved of channels. The spectrum that a secondary node acquires comes to it at a cost. Thus it becomes important to study the 'end system' perspective of such a cost, by focusing on its implications. Specifically, we consider the problem of incentivizing nodes to provide the service of routing using the acquired spectrum. In this problem, each secondary node having a certain capacity incurs a cost for routing traffic through it. Secondary nodes will not have an incentive to relay traffic unless they are compensated for the costs they incur in forwarding traffic. We propose a path auction scheme in which each secondary node announces its cost and capacity to the routing mechanism, both of which are considered as private information known only to the node. We design a route selection mechanism and a pricing function that can induce nodes to reveal their cost and capacity honestly (making our auction truthful), while minimizing the payment that needs to be given to the nodes (making our auction optimal). By considering capacity constraint of the nodes, we explicitly support multiple path routing. For deploying our path auction based routing mechanism in DSA networks, we provide polynomial time algorithms to find the optimal route over which traffic should be routed and to compute the payment that each node should receive. All our proposed algorithms have been evaluated via extensive simulation experiments. These results help to validate our design philosophy and also illustrate the effectiveness of our solution approach.
Show less - Date Issued
- 2011
- Identifier
- CFE0004049, ucf:49125
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004049
- Title
- Quantifying Trust and Reputation for Defense against Adversaries in Multi-Channel Dynamic Spectrum Access Networks.
- Creator
-
Bhattacharjee, Shameek, Chatterjee, Mainak, Guha, Ratan, Zou, Changchun, Turgut, Damla, Catbas, Necati, University of Central Florida
- Abstract / Description
-
Dynamic spectrum access enabled by cognitive radio networks are envisioned to drivethe next generation wireless networks that can increase spectrum utility by opportunisticallyaccessing unused spectrum. Due to the policy constraint that there could be no interferenceto the primary (licensed) users, secondary cognitive radios have to continuously sense forprimary transmissions. Typically, sensing reports from multiple cognitive radios are fusedas stand-alone observations are prone to errors...
Show moreDynamic spectrum access enabled by cognitive radio networks are envisioned to drivethe next generation wireless networks that can increase spectrum utility by opportunisticallyaccessing unused spectrum. Due to the policy constraint that there could be no interferenceto the primary (licensed) users, secondary cognitive radios have to continuously sense forprimary transmissions. Typically, sensing reports from multiple cognitive radios are fusedas stand-alone observations are prone to errors due to wireless channel characteristics. Suchdependence on cooperative spectrum sensing is vulnerable to attacks such as SecondarySpectrum Data Falsification (SSDF) attacks when multiple malicious or selfish radios falsifythe spectrum reports. Hence, there is a need to quantify the trustworthiness of radios thatshare spectrum sensing reports and devise malicious node identification and robust fusionschemes that would lead to correct inference about spectrum usage.In this work, we propose an anomaly monitoring technique that can effectively cap-ture anomalies in the spectrum sensing reports shared by individual cognitive radios duringcooperative spectrum sensing in a multi-channel distributed network. Such anomalies areused as evidence to compute the trustworthiness of a radio by its neighbours. The proposedanomaly monitoring technique works for any density of malicious nodes and for any physicalenvironment. We propose an optimistic trust heuristic for a system with a normal risk attitude and show that it can be approximated as a beta distribution. For a more conservativesystem, we propose a multinomial Dirichlet distribution based conservative trust framework,where Josang's Belief model is used to resolve any uncertainty in information that mightarise during anomaly monitoring. Using a machine learning approach, we identify maliciousnodes with a high degree of certainty regardless of their aggressiveness and variations intro-duced by the pathloss environment. We also propose extensions to the anomaly monitoringtechnique that facilitate learning about strategies employed by malicious nodes and alsoutilize the misleading information they provide. We also devise strategies to defend against a collaborative SSDF attack that islaunched by a coalition of selfish nodes. Since, defense against such collaborative attacks isdifficult with popularly used voting based inference models or node centric isolation techniques, we propose a channel centric Bayesian inference approach that indicates how much the collective decision on a channels occupancy inference can be trusted. Based on the measured observations over time, we estimate the parameters of the hypothesis of anomalous andnon-anomalous events using a multinomial Bayesian based inference. We quantitatively define the trustworthiness of a channel inference as the difference between the posterior beliefsassociated with anomalous and non-anomalous events. The posterior beliefs are updated based on a weighted average of the prior information on the belief itself and the recently observed data.Subsequently, we propose robust fusion models which utilize the trusts of the nodes to improve the accuracy of the cooperative spectrum sensing decisions. In particular, we propose three fusion models: (i) optimistic trust based fusion, (ii) conservative trust based fusion, and (iii) inversion based fusion. The former two approaches exclude untrustworthy sensing reports for fusion, while the last approach utilizes misleading information. Allschemes are analyzed under various attack strategies. We propose an asymmetric weightedmoving average based trust management scheme that quickly identifies on-off SSDF attacks and prevents quick trust redemption when such nodes revert back to temporal honest behavior. We also provide insights on what attack strategies are more effective from the adversaries' perspective.Through extensive simulation experiments we show that the trust models are effective in identifying malicious nodes with a high degree of certainty under variety of network and radio conditions. We show high true negative detection rates even when multiple malicious nodes launch collaborative attacks which is an improvement over existing voting based exclusion and entropy divergence techniques. We also show that we are able to improve the accuracy of fusion decisions compared to other popular fusion techniques. Trust based fusion schemes show worst case decision error rates of 5% while inversion based fusion show 4% as opposed majority voting schemes that have 18% error rate. We also show that the proposed channel centric Bayesian inference based trust model is able to distinguish between attacked and non-attacked channels for both static and dynamic collaborative attacks. We are also able to show that attacked channels have significantly lower trust values than channels that are not(-) a metric that can be used by nodes to rank the quality of inference on channels.
Show less - Date Issued
- 2015
- Identifier
- CFE0005764, ucf:50081
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005764
- Title
- MODELING, DESIGN AND EVALUATION OF NETWORKING SYSTEMS AND PROTOCOLS THROUGH SIMULATION.
- Creator
-
Lacks, Daniel, Kocak, Taskin, University of Central Florida
- Abstract / Description
-
Computer modeling and simulation is a practical way to design and test a system without actually having to build it. Simulation has many benefits which apply to many different domains: it reduces costs creating different prototypes for mechanical engineers, increases the safety of chemical engineers exposed to dangerous chemicals, speeds up the time to model physical reactions, and trains soldiers to prepare for battle. The motivation behind this work is to build a common software framework...
Show moreComputer modeling and simulation is a practical way to design and test a system without actually having to build it. Simulation has many benefits which apply to many different domains: it reduces costs creating different prototypes for mechanical engineers, increases the safety of chemical engineers exposed to dangerous chemicals, speeds up the time to model physical reactions, and trains soldiers to prepare for battle. The motivation behind this work is to build a common software framework that can be used to create new networking simulators on top of an HLA-based federation for distributed simulation. The goals are to model and simulate networking architectures and protocols by developing a common underlying simulation infrastructure and to reduce the time a developer has to learn the semantics of message passing and time management to free more time for experimentation and data collection and reporting. This is accomplished by evolving the simulation engine through three different applications that model three different types of network protocols. Computer networking is a good candidate for simulation because of the Internet's rapid growth that has spawned off the need for new protocols and algorithms and the desire for a common infrastructure to model these protocols and algorithms. One simulation, the 3DInterconnect simulator, simulates data transmitting through a hardware k-array n-cube network interconnect. Performance results show that k-array n-cube topologies can sustain higher traffic load than the currently used interconnects. The second simulator, Cluster Leader Logic Algorithm Simulator, simulates an ad-hoc wireless routing protocol that uses a data distribution methodology based on the GPS-QHRA routing protocol. CLL algorithm can realize a maximum of 45% power savings and maximum 25% reduced queuing delay compared to GPS-QHRA. The third simulator simulates a grid resource discovery protocol for helping Virtual Organizations to find resource on a grid network to compute or store data on. Results show that worst-case 99.43% of the discovery messages are able to find a resource provider to use for computation. The simulation engine was then built to perform basic HLA operations. Results show successful HLA functions including creating, joining, and resigning from a federation, time management, and event publication and subscription.
Show less - Date Issued
- 2007
- Identifier
- CFE0001887, ucf:47399
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001887