Current Search: Wireless Sensor Networks (x)
View All Items
- Title
- DESIGN AND IMPLEMENTATION OF WIRELES SENSOR NETWORKS FOR PARKING MANAGEMENT SYSTEM.
- Creator
-
Kora, Sudhir, Phillips, Ronald, University of Central Florida
- Abstract / Description
-
The technology of wirelessly networked micro sensors promises to revolutionize the way we interact with the physical environment. A new approach to solve parking-related issues of vehicles in parking lots using wireless sensor networks is presented. This approach enables the implementation of the Parking Management System (PMS®) in public parking lots found in Airports, Commercial Buildings, Universities, etc. The design architecture of the sensor nodes is discussed here. An overall view...
Show moreThe technology of wirelessly networked micro sensors promises to revolutionize the way we interact with the physical environment. A new approach to solve parking-related issues of vehicles in parking lots using wireless sensor networks is presented. This approach enables the implementation of the Parking Management System (PMS®) in public parking lots found in Airports, Commercial Buildings, Universities, etc. The design architecture of the sensor nodes is discussed here. An overall view of the sensor network, which covers the whole of the parking lot, is also summarized. Detailed description of the software architecture that supports the hardware is provided. A sample experiment for detecting the movement of vehicles by placing the sensor nodes allowing vehicles to pass over it is performed. The readings are sent to a local database server, which gives an indication of the actual number of vehicles parked in the building at any time. This application-oriented project also identifies important areas of further work in power management, communication, collaborative signal processing and parking management.
Show less - Date Issued
- 2005
- Identifier
- CFE0000669, ucf:46522
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000669
- Title
- INTRUSION DETECTION IN WIRELESS SENSOR NETWORKS.
- Creator
-
NGUYEN, HONG NHUNG, Turgut, Damla, University of Central Florida
- Abstract / Description
-
There are several applications that use sensor motes and researchers continue to explore additional applications. For this particular application of detecting the movement of humans through the sensor field, a set of Berkley mica2 motes on TinyOS operating system is used. Different sensors such as pressure, light, and so on can be used to identify the presence of an intruder in the field. In our case, the light sensor is chosen for the detection. When an intruder crosses the monitored...
Show moreThere are several applications that use sensor motes and researchers continue to explore additional applications. For this particular application of detecting the movement of humans through the sensor field, a set of Berkley mica2 motes on TinyOS operating system is used. Different sensors such as pressure, light, and so on can be used to identify the presence of an intruder in the field. In our case, the light sensor is chosen for the detection. When an intruder crosses the monitored environment, the system detects the changes of the light values, and any significant change meaning that a change greater than a pre-defined threshold. This indicates the presence of an intruder. An integrated web cam is used to take snapshot of the intruder and transmit the picture through the network to a remote station. The basic motivation of this thesis is that a sensor web system can be used to monitor and detect any intruder in a specific area from a remote location.
Show less - Date Issued
- 2006
- Identifier
- CFE0001027, ucf:46793
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001027
- Title
- Energy efficient routing towards a mobile sink using virtual coordinates in a wireless sensor network.
- Creator
-
Rahmatizadeh, Rouhollah, Boloni, Ladislau, Turgut, Damla, Jha, Sumit, University of Central Florida
- Abstract / Description
-
The existence of a coordinate system can often improve the routing in a wireless sensor network. While most coordinate systems correspond to the geometrical or geographical coordinates, in recent years researchers had proposed the use of virtual coordinates. Virtual coordinates depend only on the topology of the network as defined by the connectivity of the nodes, without requiring geographical information. The work in this thesis extends the use of virtual coordinates to scenarios where the...
Show moreThe existence of a coordinate system can often improve the routing in a wireless sensor network. While most coordinate systems correspond to the geometrical or geographical coordinates, in recent years researchers had proposed the use of virtual coordinates. Virtual coordinates depend only on the topology of the network as defined by the connectivity of the nodes, without requiring geographical information. The work in this thesis extends the use of virtual coordinates to scenarios where the wireless sensor network has a mobile sink. One reason to use a mobile sink is to distribute the energy consumption more evenly among the sensor nodes and thus extend the life-time of the network. We developed two algorithms, MS-DVCR and CU-DVCR which perform routing towards a mobile sink using virtual coordinates. In contrast to the baseline virtual coordinate routing MS-DVCR limits routing updates triggered by the sink movement to a local area around the sink. In contrast, CU-DVCR limits the route updates to a circular area on the boundary of the local area. We describe the design justification and the implementation of these algorithms. Using a set of experimental studies, we show that MS-DVCR and CU-DVCR achieve a lower energy consumption compared to the baseline virtual coordinate routing without any noticeable impact on routing performance. In addition, CU-DVCR provides a lower energy consumption than MS-DVCR for the case of a fast moving sink.
Show less - Date Issued
- 2014
- Identifier
- CFE0005402, ucf:50422
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005402
- Title
- Routing, Localization and Positioning Protocols for Wireless Sensor and Actor Networks.
- Creator
-
Akbas, Mustafa, Turgut, Damla, Boloni, Ladislau, Georgiopoulos, Michael, Brust, Matthias, Bassiouni, Mostafa, Zhao, Yue, University of Central Florida
- Abstract / Description
-
Wireless sensor and actor networks (WSANs) are distributed systems of sensor nodes and actors that are interconnected over the wireless medium. Sensor nodes collect information about the physical world and transmit the data to actors by using one-hop or multi-hop communications. Actors collect information from the sensor nodes, process the information, take decisions and react to the events.This dissertation presents contributions to the methods of routing, localization and positioning in...
Show moreWireless sensor and actor networks (WSANs) are distributed systems of sensor nodes and actors that are interconnected over the wireless medium. Sensor nodes collect information about the physical world and transmit the data to actors by using one-hop or multi-hop communications. Actors collect information from the sensor nodes, process the information, take decisions and react to the events.This dissertation presents contributions to the methods of routing, localization and positioning in WSANs for practical applications. We first propose a routing protocol with service differentiation for WSANs with stationary nodes. In this setting, we also adapt a sports ranking algorithm to dynamically prioritize the events in the environment depending on the collected data. We extend this routing protocol for an application, in which sensor nodes float in a river to gather observations and actors are deployed at accessible points on the coastline. We develop a method with locally acting adaptive overlay network formation to organize the network with actor areas and to collect data by using locality-preserving communication.We also present a multi-hop localization approach for enriching the information collected from the river with the estimated locations of mobile sensor nodes without using positioning adapters. As an extension to this application, we model the movements of sensor nodes by a subsurface meandering current mobility model with random surface motion. Then we adapt the introduced routing and network organization methods to model a complete primate monitoring system. A novel spatial cut-off preferential attachment model and center of mass concept are developed according to the characteristics of the primate groups. We also present a role determination algorithm for primates, which uses the collection of spatial-temporal relationships. We apply a similar approach to human social networks to tackle the problem of automatic generation and organization of social networks by analyzing and assessing interaction data. The introduced routing and localization protocols in this dissertation are also extended with a novel three dimensional actor positioning strategy inspired by the molecular geometry. Extensive simulations are conducted in OPNET simulation tool for the performance evaluation of the proposed protocols.
Show less - Date Issued
- 2013
- Identifier
- CFE0005292, ucf:50564
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005292
- Title
- Passive, Wireless SAW OFC Strain Sensor and Software Defined Radio Interrogator.
- Creator
-
Humphries, James, Malocha, Donald, Richie, Samuel, Weeks, Arthur, Sundaram, Kalpathy, Saha, Haripada, University of Central Florida
- Abstract / Description
-
Surface acoustic wave (SAW) devices have exhibited unique capabilities to meet the demands for many applications due to the inherent properties of SAW devices and piezoelectric materials. In particular, SAW devices have been adapted as sensors that can be configured to operate both passively and wirelessly. SAW sensors can be operated in harsh environmental extremes where typical sensor technologies are not able to operate. Because the sensors are passive, a radio transceiver is required to...
Show moreSurface acoustic wave (SAW) devices have exhibited unique capabilities to meet the demands for many applications due to the inherent properties of SAW devices and piezoelectric materials. In particular, SAW devices have been adapted as sensors that can be configured to operate both passively and wirelessly. SAW sensors can be operated in harsh environmental extremes where typical sensor technologies are not able to operate. Because the sensors are passive, a radio transceiver is required to interrogate the sensor and receive the reflected response that has been modulated by the SAW device. This dissertation presents the design of a passive, wireless SAW OFC strain sensor and software defined radio (SDR) interrogator.A SAW strain sensor has been designed and tested using orthogonal frequency coding (OFC) on YZ-LiNbO3. OFC for SAW devices has been previously developed at UCF and provides both frequency and time diversity in the RFID code as well as providing processing gain to improve the sensor SNR. Strain effects in SAW devices are discussed and two sensor embodiments are developed. The first embodiment is a cantilever structure and provides insight on how strain effects the SAW device. The second embodiment bonds the SAW die directly to a test structure to measure the strain on the structure. A commercial wired foil strain gage provides a performance comparison and shows that the wireless SAW sensor performs comparably. A commercial-off-the-shelf SDR platform has been employed as the SAW sensor interrogator. The Universal Software Radio Peripheral (USRP) is available in many embodiments and is capable of operation of to 6GHz and up to 160MHz of bandwidth. In particular, the USRP B200 is utilized as the RF transceiver platform. Custom FPGA modifications are discussed to fully utilize the USRP B200 bandwidth (56MHz) and synchronize the transmit and receive chains. External hardware has also been introduced to the B200 to improve RF performance, all of which are incorporated into a custom enclosure. Post-processing of the SAW sensor response is accomplished in Python using a matched filter correlator routine to extract sensor information. The system is demonstrated by interrogating wireless OFC SAW temperature and strain sensors at 915MHz.
Show less - Date Issued
- 2016
- Identifier
- CFE0006329, ucf:51560
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006329
- Title
- MEDIUM ACCESS CONTROL PROTOCOLS AND ROUTING ALGORITHMS FOR WIRELESS SENSOR NETWORKS.
- Creator
-
Bag, Anirban, Bassiouni, Mostafa, University of Central Florida
- Abstract / Description
-
In recent years, the development of a large variety of mobile computing devices has led to wide scale deployment and use of wireless ad hoc and sensor networks. Wireless Sensor Networks consist of battery powered, tiny and cheap "motes", having sensing and wireless communication capabilities. Although wireless motes have limited battery power, communication and computation capabilities, the range of their application is vast. In the first part of the dissertation, we have addressed the...
Show moreIn recent years, the development of a large variety of mobile computing devices has led to wide scale deployment and use of wireless ad hoc and sensor networks. Wireless Sensor Networks consist of battery powered, tiny and cheap "motes", having sensing and wireless communication capabilities. Although wireless motes have limited battery power, communication and computation capabilities, the range of their application is vast. In the first part of the dissertation, we have addressed the specific application of Biomedical Sensor Networks. To solve the problem of data routing in these networks, we have proposed the Adaptive Least Temperature Routing (ALTR) algorithm that reduces the average temperature rise of the nodes in the in-vivo network while routing data efficiently. For delay sensitive biomedical applications, we proposed the Hotspot Preventing Routing (HPR) algorithm which avoids the formation of hotspots (regions having very high temperature) in the network. HPR forwards the packets using the shortest path, bypassing the regions of high temperature and thus significantly reduces the average packet delivery delay, making it suitable for real-time applications of in-vivo networks. We also proposed another routing algorithm suitable for being used in a network of id-less biomedical sensor nodes, namely Routing Algorithm for networks of homogeneous and Id-less biomedical sensor Nodes (RAIN). Finally we developed Biocomm, a cross-layer MAC and Routing protocol co-design for Biomedical Sensor Networks, which optimizes the overall performance of an in-vivo network through cross-layer interactions. We performed extensive simulations to show that the proposed Biocomm protocol performs much better than the other existing MAC and Routing protocols in terms of preventing the formation of hotspots, reducing energy consumption of nodes and preventing network congestion when used in an in-vivo network. In the second part of the dissertation, we have addressed the problems of habitat-monitoring sensor networks, broadcast algorithms for sensor networks and the congestion problem in sensor networks as well as one non-sensor network application, namely, on-chip communication networks. Specifically, we have proposed a variation of HPR algorithm, called Hotspot Preventing Adaptive Routing (HPAR) algorithm, for efficient data routing in Networks On-Chip catering to their specific hotspot prevention issues. A protocol similar to ALTR has been shown to perform well in a sensor network deployed for habitat monitoring. We developed a reliable, low overhead broadcast algorithm for sensor networks namely Topology Adaptive Gossip (TAG) algorithm. To reduce the congestion problem in Wireless Sensor Networks, we proposed a tunable cross-layer Congestion Reducing Medium Access Control (CRMAC) protocol that utilizes buffer status information from the Network layer to give prioritized medium access to congested nodes in the MAC layer and thus preventing congestion and packet drops. CRMAC can also be easily tuned to satisfy different application-specific performance requirements. With the help of extensive simulation results we have shown how CRMAC can be adapted to perform well in different applications of Sensor Network like Emergency Situation that requires a high network throughput and low packet delivery latency or Long-term Monitoring application requiring energy conservation.
Show less - Date Issued
- 2007
- Identifier
- CFE0001915, ucf:47480
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001915
- Title
- Modeling Crowd Mobility and Communication in Wireless Networks.
- Creator
-
Solmaz, Gurkan, Turgut, Damla, Bassiouni, Mostafa, Guha, Ratan, Goldiez, Brian, University of Central Florida
- Abstract / Description
-
This dissertation presents contributions to the fields of mobility modeling, wireless sensor networks (WSNs) with mobile sinks, and opportunistic communication in theme parks. The two main directions of our contributions are human mobility models and strategies for the mobile sink positioning and communication in wireless networks.The first direction of the dissertation is related to human mobility modeling. Modeling the movement of human subjects is important to improve the performance of...
Show moreThis dissertation presents contributions to the fields of mobility modeling, wireless sensor networks (WSNs) with mobile sinks, and opportunistic communication in theme parks. The two main directions of our contributions are human mobility models and strategies for the mobile sink positioning and communication in wireless networks.The first direction of the dissertation is related to human mobility modeling. Modeling the movement of human subjects is important to improve the performance of wireless networks with human participants and the validation of such networks through simulations. The movements in areas such as theme parks follow specific patterns that are not taken into consideration by the general purpose mobility models. We develop two types of mobility models of theme park visitors. The first model represents the typical movement of visitors as they are visiting various attractions and landmarks of the park. The second model represents the movement of the visitors as they aim to evacuate the park after a natural or man-made disaster.The second direction focuses on the movement patterns of mobile sinks and their communication in responding to various events and incidents within the theme park. When an event occurs, the system needs to determine which mobile sink will respond to the event and its trajectory. The overall objective is to optimize the event coverage by minimizing the time needed for the chosen mobile sink to reach the incident area. We extend this work by considering the positioning problem of mobile sinks and preservation of the connected topology. We propose a new variant of p-center problem for optimal placement and communication of the mobile sinks. We provide a solution to this problem through collaborative event coverage of the WSNs with mobile sinks. Finally, we develop a network model with opportunistic communication for tracking the evacuation of theme park visitors during disasters. This model involves people with smartphones that store and carry messages. The mobile sinks are responsible for communicating with the smartphones and reaching out to the regions of the emergent events.
Show less - Date Issued
- 2015
- Identifier
- CFE0006005, ucf:51024
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006005
- Title
- Energy Efficient and Secure Wireless Sensor Networks Design.
- Creator
-
Attiah, Afraa, Zou, Changchun, Chatterjee, Mainak, Wang, Jun, Yuksel, Murat, Wang, Chung-Ching, University of Central Florida
- Abstract / Description
-
ABSTRACTWireless Sensor Networks (WSNs) are emerging technologies that have the ability to sense,process, communicate, and transmit information to a destination, and they are expected to have significantimpact on the efficiency of many applications in various fields. The resource constraintsuch as limited battery power, is the greatest challenge in WSNs design as it affects the lifetimeand performance of the network. An energy efficient, secure, and trustworthy system is vital whena WSN...
Show moreABSTRACTWireless Sensor Networks (WSNs) are emerging technologies that have the ability to sense,process, communicate, and transmit information to a destination, and they are expected to have significantimpact on the efficiency of many applications in various fields. The resource constraintsuch as limited battery power, is the greatest challenge in WSNs design as it affects the lifetimeand performance of the network. An energy efficient, secure, and trustworthy system is vital whena WSN involves highly sensitive information. Thus, it is critical to design mechanisms that are energyefficient and secure while at the same time maintaining the desired level of quality of service.Inspired by these challenges, this dissertation is dedicated to exploiting optimization and gametheoretic approaches/solutions to handle several important issues in WSN communication, includingenergy efficiency, latency, congestion, dynamic traffic load, and security. We present severalnovel mechanisms to improve the security and energy efficiency of WSNs. Two new schemes areproposed for the network layer stack to achieve the following: (a) to enhance energy efficiencythrough optimized sleep intervals, that also considers the underlying dynamic traffic load and (b)to develop the routing protocol in order to handle wasted energy, congestion, and clustering. Wealso propose efficient routing and energy-efficient clustering algorithms based on optimization andgame theory. Furthermore, we propose a dynamic game theoretic framework (i.e., hyper defense)to analyze the interactions between attacker and defender as a non-cooperative security game thatconsiders the resource limitation. All the proposed schemes are validated by extensive experimentalanalyses, obtained by running simulations depicting various situations in WSNs in orderto represent real-world scenarios as realistically as possible. The results show that the proposedschemes achieve high performance in different terms, such as network lifetime, compared with thestate-of-the-art schemes.
Show less - Date Issued
- 2018
- Identifier
- CFE0006971, ucf:51672
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006971