Current Search: Zeta Potential (x)
View All Items
- Title
- THE EFFECT OF COLLOIDAL STABILITY ON THE HEAT TRANSFER CHARACTERISTICS OF NANOSILICA DISPERSED FLUIDS.
- Creator
-
Venkataraman, Manoj, Kumar, Ranganathan, University of Central Florida
- Abstract / Description
-
Addition of nano particles to cooling fluids has shown marked improvement in the heat transfer capabilities. Nanofluids, liquids that contain dispersed nanoparticles, are an emerging class of fluids that have great potential in many applications. There is a need to understand the fundamental behavior of nano dispersed particles with respect to their agglomeration characteristics and how it relates to the heat transfer capability. Such an understanding is important for the development and...
Show moreAddition of nano particles to cooling fluids has shown marked improvement in the heat transfer capabilities. Nanofluids, liquids that contain dispersed nanoparticles, are an emerging class of fluids that have great potential in many applications. There is a need to understand the fundamental behavior of nano dispersed particles with respect to their agglomeration characteristics and how it relates to the heat transfer capability. Such an understanding is important for the development and commercialization of nanofluids. In this work, the stability of nano particles was studied by measuring the zeta potential of colloidal particles, particle concentration and size. Two different sizes of silica nano particles, 10 nm and 20 nm are used in this investigation at 0.2 vol. % and 0.5 vol. % concentrations. The measurements were made in deionized (DI) water, buffer solutions at various pH, DI water plus HCl acid solution (acidic pH) and DI water plus NaOH solution (basic pH). The stability or instability of silica dispersions in these solutions was related to the zeta potential of colloidal particles and confirmed by particle sizing measurements and independently by TEM observations. Low zeta potentials resulted in agglomeration as expected and the measured particle size was greater. The heat transfer characteristics of stable or unstable silica dispersions using the above solutions were experimentally determined by measuring heat flux as a function of temperature differential between a nichrome wire and the surrounding fluid. These experiments allowed the determination of the critical heat flux (CHF), which was then related to the dispersion characteristics of the nanosilica in various fluids described above. The thickness of the diffuse layer on nano particles was computed and experimentally confirmed in selected conditions for which there was no agglomeration. As the thickness of the diffuse layer decreased due to the increase in salt content or the ionic content, the electrostatic force of repulsion cease to exist and Van der Waal's force of agglomeration prevailed causing the particles to agglomerate affecting the CHF. The 10nm size silica particle dispersions showed better heat transfer characteristics compared to 20nm dispersion. It was also observed that at low zeta potential values, where agglomeration prevailed in the dispersion, the silica nano particles had a tendency to deposit on the nickel chromium wire used in CHF experiments. The thickness of the deposition was measured and the results show that with a very high deposition, CHF is enhanced due to the porosity on the wire. The 10nm size silica particles show higher CHF compared to 20nm silica particles. In addition, for both 10nm and 20nm silica particles, 0.5 vol. % concentration yielded higher heat transfer compared to 0.2 vol. % concentration. It is believed that although CHF is significantly increased with nano silica containing fluids compared to pure fluids, formation of particle clusters in unstable slurries will lead to detrimental long time performance, compared to that with stable silica dispersions.
Show less - Date Issued
- 2005
- Identifier
- CFE0000837, ucf:46676
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000837
- Title
- PROBING THE NANOSCALE INTERACTION FORCES AND ELASTIC PROPERTIES OF ORGANIC AND INORGANIC MATERIALS USING FORCE-DISTANCE (F-D) SPECTROSCOPY.
- Creator
-
Vincent, Abhilash, Seal, Sudipta, University of Central Florida
- Abstract / Description
-
Due to their therapeutic applications such as radical scavenging, MRI contrast imaging, Photoluminescence imaging, drug delivery, etc., nanoparticles (NPs) have a significant importance in bio-nanotechnology. The reason that prevents the utilizing NPs for drug delivery in medical field is mostly due to their biocompatibility issues (incompatibility can lead to toxicity and cell death). Changes in the surface conditions of NPs often lead to NP cytotoxicity. Investigating the role of NP surface...
Show moreDue to their therapeutic applications such as radical scavenging, MRI contrast imaging, Photoluminescence imaging, drug delivery, etc., nanoparticles (NPs) have a significant importance in bio-nanotechnology. The reason that prevents the utilizing NPs for drug delivery in medical field is mostly due to their biocompatibility issues (incompatibility can lead to toxicity and cell death). Changes in the surface conditions of NPs often lead to NP cytotoxicity. Investigating the role of NP surface properties (surface charges and surface chemistry) on their interactions with biomolecules (Cells, protein and DNA) could enhance the current understanding of NP cytotoxicity. Hence, it is highly beneficial to the nanotechnology community to bring more attention towards the enhancement of surface properties of NPs to make them more biocompatible and less toxic to biological systems. Surface functionalization of NPs using specific ligand biomolecules have shown to enhance the protein adsorption and cellular uptake through more favorable interaction pathways. Cerium oxide NPs (CNPs also known as nanoceria) are potential antioxidants in cell culture models and understanding the nature of interaction between cerium oxide NPs and biological proteins and cells are important due to their therapeutic application (especially in site specific drug delivery systems). The surface charges and surface chemistry of CNPs play a major role in protein adsorption and cellular uptake. Hence, by tuning the surface charges and by selecting proper functional molecules on the surface, CNPs exhibiting strong adhesion to biological materials can be prepared. By probing the nanoscale interaction forces acting between CNPs and protein molecules using Atomic Force Microscopy (AFM) based force-distance (F-D) spectroscopy, the mechanism of CNP-protein adsorption and CNP cellular uptake can be understood more quantitatively. The work presented in this dissertation is based on the application of AFM in studying the interaction forces as well as the mechanical properties of nanobiomaterials. The research protocol employed in the earlier part of the dissertation is specifically aimed to understand the operation of F-D spectroscopy technique. The elastic properties of thin films of silicon dioxide NPs were investigated using F-D spectroscopy in the high force regime of few 100 nN to 1 õN. Here, sol-gel derived porous nanosilica thin films of varying surface morphology, particle size and porosity were prepared through acid and base catalyzed process. AFM nanoindentation experiments were conducted on these films using the F-D spectroscopy mode and the nanoscale elastic properties of these films were evaluated. The major contribution of this dissertation is a study exploring the interaction forces acting between CNPs and transferrin proteins in picoNewton scale regime using the force-distance spectroscopy technique. This study projects the importance of obtaining appropriate surface charges and surface chemistry so that the NP can exhibit enhanced protein adsorption and NP cellular uptake.
Show less - Date Issued
- 2010
- Identifier
- CFE0003079, ucf:48305
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003079