Current Search: acropora cervicornis (x)
View All Items
- Title
- RAMAN SPECTROSCOPY OF THE SKELETON OF THE CORAL ACROPORA CERVICORNIS.
- Creator
-
Shepard, Zachary C, Orlovskaya, Nina, University of Central Florida
- Abstract / Description
-
Coral reefs are an important element of marine ecosystem that are critical to maintain a healthy environment. Unfortunately, in recent years coral reefs are doing poorly and many in parts of the ocean are simply dying. Therefore, study of coral's structural response to external loads could answer what will happen with their structures, while they exhibit different types of loading. Therefore, the proposition of using in-situ micro-Raman spectroscopy to study skeletons of Acropora cervicornis...
Show moreCoral reefs are an important element of marine ecosystem that are critical to maintain a healthy environment. Unfortunately, in recent years coral reefs are doing poorly and many in parts of the ocean are simply dying. Therefore, study of coral's structural response to external loads could answer what will happen with their structures, while they exhibit different types of loading. Therefore, the proposition of using in-situ micro-Raman spectroscopy to study skeletons of Acropora cervicornis was used. Coral skeleton samples I subjected to mechanical loading studied their vibrational properties by exciting the material with 532nm visible light. A uniaxial compressive load I applied using a MTS universal testing machine and then using the Raman Spectroscopy to study the vibrational response of coral skeletons. Indentations used Vickers Hardness tester and performed 2D mapping of the coral structure around the indentation. If it's expected that as a result of the proposed research the better understanding of structural stability of the Acropora Cervicornis coral skeletons will be achieved.
Show less - Date Issued
- 2018
- Identifier
- CFH2000398, ucf:45856
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH2000398
- Title
- MECHANICAL PROPERTIES OF THE SKELETON OF ACROPORA CERVICORNIS.
- Creator
-
Masa, Bridget, Orlovskaya, Nina, University of Central Florida
- Abstract / Description
-
This research explores the instantaneous mechanical behavior of the skeleton of the critically endangered staghorn coral Acropora cervicornis. Both bleached and sanded skeletons were used in this experiment. The Raman spectroscopy test showed that there was no significant change in the Raman shift between the three branches tested. The shifts were nearly identical to Raman shifts of calcium carbonate. Vickers hardness test found that 1 Bleached had the average hardness of 3.44 GPa with a...
Show moreThis research explores the instantaneous mechanical behavior of the skeleton of the critically endangered staghorn coral Acropora cervicornis. Both bleached and sanded skeletons were used in this experiment. The Raman spectroscopy test showed that there was no significant change in the Raman shift between the three branches tested. The shifts were nearly identical to Raman shifts of calcium carbonate. Vickers hardness test found that 1 Bleached had the average hardness of 3.44 GPa with a standard deviation of 0.12 GPa. The sanded sample also had a similar value of 3.54 GPa with a standard deviation of 0.13 GPa. Samples from 2 Bleached had a hardness value that was significantly lower at only 2.68 GPa with a standard deviation of 0.37 GPa. The axial compressive stress test determined that the average strength for the bleached samples was 18.98 MPa and for the sanded, 29.16 MPa. This information can be used to assist in the restoration of this species.
Show less - Date Issued
- 2018
- Identifier
- CFH2000396, ucf:45852
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH2000396
- Title
- Mechanical Properties of Brittle Ceramics: Case Study of Boron Rich Ceramics and Acropora cervicornis Coral Skeleton.
- Creator
-
Carrasco-Pena, Alejandro, Kwok, Kawai, Orlovskaya, Nina, Gou, Jihua, Uribe Romo, Fernando, University of Central Florida
- Abstract / Description
-
Ceramics are ubiquitous in man-made and natural structures. Their mechanical properties highly depend on their composition, microstructure and level of defects in the bulk of the material, the latter affecting the integrity of the components; such is the case of boron-rich ceramics where large agglomerates create high stressed regions, or coral skeleton where porosity determines their strength against hydrodynamic forces present in the ocean tides. Therefore, studying the properties of...
Show moreCeramics are ubiquitous in man-made and natural structures. Their mechanical properties highly depend on their composition, microstructure and level of defects in the bulk of the material, the latter affecting the integrity of the components; such is the case of boron-rich ceramics where large agglomerates create high stressed regions, or coral skeleton where porosity determines their strength against hydrodynamic forces present in the ocean tides. Therefore, studying the properties of ceramic materials using invasive and non-invasive methods helps in the understanding of the link between the properties and the performance of the structures. The aim of this research was to test the novel ceramic component ZrB2-30wt%SiB6 and Acropora cervicornis coral skeleton using non-conventional techniques that allow for the study of their mechanical properties and their behavior when exposed to external loads present in their environments of application. The first part of this study focuses on understanding the effects of adding SiB6 to enhance the mechanical properties of ZrB2 ceramics for their ultra-high temperature use. The second part will emphasize in the behavior of Acropora cervicornis coral skeleton when exposed to compressive forces and the effects porosity has on this structure when subjected to such loads. It was found that the SiB6 phase was not stable after sintering of the composite and large agglomerates were present in the surface of the material acting as stress concentrators, thus compromising the biaxial strength of the component that resulted to be 224.9 MPa. It was also found that coral skeletons are highly susceptible to porosity which creates variability on the elastic modulus ranging from 60-1 GPa for simulated porosity of 0-90% respectively and a strength of 3.56 (&)#177; 0.31 GPa obtained through Vickers indentation. Finite element models were developed and validated against experimental results for the ZrB2-30wt%SiB6 and Acropora cervicornis coral skeleton.
Show less - Date Issued
- 2019
- Identifier
- CFE0007440, ucf:52696
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007440