Current Search: brightness (x)
View All Items
- Title
- ANALYIS OF AIRBORNE MICROWAVE POLARIMETRIC RADIOMETER MEASUREMENTS IN THE PRESENCE OF DYNAMIC PLATFORM ATTITUDE ERRORS.
- Creator
-
Kabore, Jean Yves, Jones, Linwood, University of Central Florida
- Abstract / Description
-
There are numerous applications for airborne imaging systems in remote sensing, and this thesis deals with a new microwave polarimetric radiometer technique for inferring ocean surface wind direction [3, 5, 7]. This technique is based upon the anisotropy of the polarized ocean blackbody emissions at microwave frequencies relative to the azimuth angle between the microwave radiometer antenna "look" direction and the direction of the wind. Because of the weak wind direction signature, it is...
Show moreThere are numerous applications for airborne imaging systems in remote sensing, and this thesis deals with a new microwave polarimetric radiometer technique for inferring ocean surface wind direction [3, 5, 7]. This technique is based upon the anisotropy of the polarized ocean blackbody emissions at microwave frequencies relative to the azimuth angle between the microwave radiometer antenna "look" direction and the direction of the wind. Because of the weak wind direction signature, it is important that all systematic brightness temperature (Tb) errors be eliminated, especially those that vary with the radiometer antenna scan position (look direction). This can be accomplished either in hardware implementation or through data processing corrections. Unfortunately, the misalignment of the axis of rotation for a conical-scanning imager can introduce such azimuthally dependent errors of significant magnitude. As the title suggests, the analysis of the resulting Tb errors caused by static and dynamic time-varying aircraft attitude errors is the main thrust of this thesis. In this thesis, we present analytical models developed to account for platform attitude changes on measured ocean microwave brightness temperature collected by a conically scanning radiometer. Data processing procedures for removing unwanted variations in ocean brightness temperatures are outlined. The analytical models are validated by making comparisons between modelled and measured Tb's obtained by the Conically Scanning Two-Look Airborne Radiometer (C-STAR). Results demonstrated that the analytical Tb model can accurately predict the measured polarized Tb's under actual flight conditions.
Show less - Date Issued
- 2006
- Identifier
- CFE0000926, ucf:46748
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000926
- Title
- EVALUATION OF A MICROWAVE RADIATIVE TRANSFER MODEL FOR CALCULATING SATELLITE BRIGHTNESS TEMPERATURE.
- Creator
-
Thompson, Simonetta, Jones, Linwood, University of Central Florida
- Abstract / Description
-
Remote sensing is the process of gathering and analyzing information about the earth's ocean, land and atmosphere using electromagnetic "wireless" techniques. Mathematical models, known as Radiative Transfer Models (RTM), are developed to calculate the observed radiance (brightness temperature) seen by the remote sensor. The RTM calculated brightness temperature is a function of fourteen environmental parameters, including atmospheric profiles of temperature, pressure and moisture, sea...
Show moreRemote sensing is the process of gathering and analyzing information about the earth's ocean, land and atmosphere using electromagnetic "wireless" techniques. Mathematical models, known as Radiative Transfer Models (RTM), are developed to calculate the observed radiance (brightness temperature) seen by the remote sensor. The RTM calculated brightness temperature is a function of fourteen environmental parameters, including atmospheric profiles of temperature, pressure and moisture, sea surface temperature, and cloud liquid water. Input parameters to the RTM model include data from NOAA Centers for Environmental Prediction (NCEP), Reynolds weekly Sea Surface Temperature and National Ocean Data Center (NODC) WOA98 Ocean Salinity and special sensor microwave/imager (SSM/I) cloud liquid water. The calculated brightness temperatures are compared to collocated measurements from the WindSat satellite. The objective of this thesis is to fine tune the RadTb model, using simultaneous environmental parameters and measured brightness temperature from the well-calibrated WindSat radiometer. The model will be evaluated at four microwave frequencies (6.8 GHz, 10.7 GHz, 18.7 GHz, and 37.0 GHz) looking off- nadir for global radiance measurement.
Show less - Date Issued
- 2004
- Identifier
- CFE0000318, ucf:46280
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000318
- Title
- Evaluation of the Hurricane Imaging Radiometer (HIRAD) Brightness Temperatures.
- Creator
-
Sahawneh, Saleem, Jones, W Linwood, Mikhael, Wasfy, Wahid, Parveen, Zec, Josko, University of Central Florida
- Abstract / Description
-
The Hurricane Imaging Radiometer (HIRAD) is an experimental, airborne, microwave remote sensor that was developed to measure hurricane surface wind speed and rain rate, and thereby, provide data for scientific research and for the next generation operational hurricane surveillance. The object of this dissertation is to develop objective procedures and techniques that can be used to evaluate and characterize the HIRAD brightness temperature (Tb) image product provided by NASA MSFC.First, the...
Show moreThe Hurricane Imaging Radiometer (HIRAD) is an experimental, airborne, microwave remote sensor that was developed to measure hurricane surface wind speed and rain rate, and thereby, provide data for scientific research and for the next generation operational hurricane surveillance. The object of this dissertation is to develop objective procedures and techniques that can be used to evaluate and characterize the HIRAD brightness temperature (Tb) image product provided by NASA MSFC.First, the approach that was developed for geolocation (latitude and longitude) accuracy determination of HIRAD image pixels is presented. Using statistical estimation theory, high-contrast HIRAD imagery are compared with high resolution maps at land/water boundaries, and an error model and measurement results are presented for a variety of pixel locations. Also, a procedure is presented for estimating the HIRAD feature resolution, i.e., the effective spatial resolution (instantaneous field of view, IFOV) in the HIRAD Tb images. Next, the objective technique developed to evaluate HIRAD reconstructed ocean brightness temperature (Tb) images is described and presented. Examples are presented for several ocean scenes, which covers a wide range of ocean wind speed conditions that include Hurricanes. For these cases, surface truth in the form of independent ocean brightness temperatures measurements are obtained by airborne microwave radiometers for comparison.
Show less - Date Issued
- 2017
- Identifier
- CFE0006653, ucf:51221
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006653
- Title
- EVALUATION OF A MICROWAVE RADIATIVE TRANSFER MODEL FOR CALCULATING SATELLITE BRIGHTNESS TEMPERATURE.
- Creator
-
Thompson, Simonetta, Jones, Linwood, University of Central Florida
- Abstract / Description
-
Remote sensing is the process of gathering and analyzing information about the earth's ocean, land and atmosphere using electromagnetic "wireless" techniques. Mathematical models, known as Radiative Transfer Models (RTM), are developed to calculate the observed radiance (brightness temperature) seen by the remote sensor. The RTM calculated brightness temperature is a function of fourteen environmental parameters, including atmospheric profiles of temperature, pressure and moisture, sea...
Show moreRemote sensing is the process of gathering and analyzing information about the earth's ocean, land and atmosphere using electromagnetic "wireless" techniques. Mathematical models, known as Radiative Transfer Models (RTM), are developed to calculate the observed radiance (brightness temperature) seen by the remote sensor. The RTM calculated brightness temperature is a function of fourteen environmental parameters, including atmospheric profiles of temperature, pressure and moisture, sea surface temperature, and cloud liquid water. Input parameters to the RTM model include data from NOAA Centers for Environmental Prediction (NCEP), Reynolds weekly Sea Surface Temperature and National Ocean Data Center (NODC) WOA98 Ocean Salinity and special sensor microwave/imager (SSM/I) cloud liquid water. The calculated brightness temperatures are compared to collocated measurements from the WindSat satellite. The objective of this thesis is to fine tune the RadTb model, using simultaneous environmental parameters and measured brightness temperature from the well-calibrated WindSat radiometer. The model will be evaluated at four microwave frequencies (6.8 GHz, 10.7 GHz, 18.7 GHz, and 37.0 GHz) looking off- nadir for global radiance measurement.
Show less - Date Issued
- 2004
- Identifier
- CFE0000325, ucf:46303
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000325
- Title
- Hurricane Imaging Radiometer (HIRAD) tropical rainfall retrievals.
- Creator
-
Alasgah, Abdusalam, Jones, W Linwood, Wahid, Parveen, Mikhael, Wasfy, Gong, Xun, Zec, Josko, University of Central Florida
- Abstract / Description
-
The Hurricane Imaging Radiometer (HIRAD) is an airborne passive microwave remote sensor, developed to measure wind speed and rain rate in hurricanes. This dissertation concerns the development of a signal processing algorithm to infer tropical rainfall from HIRAD radiance (brightness temperature, Tb) measurements.The basis of the rain rate retrieval algorithm is an improved forward microwave radiative transfer model (RTM) that incorporates the HIRAD multi-antenna-beam geometry, and uses semi...
Show moreThe Hurricane Imaging Radiometer (HIRAD) is an airborne passive microwave remote sensor, developed to measure wind speed and rain rate in hurricanes. This dissertation concerns the development of a signal processing algorithm to infer tropical rainfall from HIRAD radiance (brightness temperature, Tb) measurements.The basis of the rain rate retrieval algorithm is an improved forward microwave radiative transfer model (RTM) that incorporates the HIRAD multi-antenna-beam geometry, and uses semi-empirical coefficients derived from an airborne experiment that occurred in the Gulf of Mexico off Tampa Bay in 2013. During this flight, HIRAD observed a squall line of thunderstorms simultaneously with an airborne meteorological radar (High Altitude Wind and Rain Profiler, HIWRAP), located on the same airplane. Also, ground based NEXRAD radars from the National Weather Service (located at Tampa and Tallahassee) provided high resolution simultaneous rain rate measurements.Using NEXRAD rainfall as the surface truth input to the HIRAD RTM, empirical rain microwave absorption coefficients were tuned to match the measured brightness temperatures. Also, the collocated HIWRAP radar reflectivity (dBZ) measurements were cross correlated with NEXRAD to derive the empirical HIWRAP radar reflectivity to rain rate relationship. Finally, the HIRAD measured Tbs were input to the HIRAD rain retrieval algorithm to derive estimates of rain rate, which were validated using the independent HIWRAP measurements of rain rate.
Show less - Date Issued
- 2019
- Identifier
- CFE0007775, ucf:52379
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007775
- Title
- Brightness Temperature Calibration of SAC-D/Aquarius Microwave Radiometer (MWR).
- Creator
-
Biswas, Sayak, Jones, W, Georgiopoulos, Michael, Wahid, Parveen, Wilheit, Thomas, University of Central Florida
- Abstract / Description
-
The Aquarius/SAC-D joint international science mission, between the NationalAeronautics and Space Administration (NASA) of United States and the Argentine Space Agency (Comision Nacional de Actividades Espaciales, CONAE), was launched on a polar-orbiting satellite on June 10, 2011. This mission of discovery will provide measurements of the global sea surface salinity, which contributes to understanding climatic changes in the global water cycle and how these variations inuence the general...
Show moreThe Aquarius/SAC-D joint international science mission, between the NationalAeronautics and Space Administration (NASA) of United States and the Argentine Space Agency (Comision Nacional de Actividades Espaciales, CONAE), was launched on a polar-orbiting satellite on June 10, 2011. This mission of discovery will provide measurements of the global sea surface salinity, which contributes to understanding climatic changes in the global water cycle and how these variations inuence the general ocean circulation. The Microwave Radiometer (MWR), a three channel Dicke radiometer operating at 23.8 GHz H-Pol and 36.5 GHz V-(&) H-Pol provided by CONAE, will complement Aquarius (NASA's L-band radiometer/scatterometer) by providing simultaneous spatially collocated environmental measurements such as water vapor, cloud liquid water, surface wind speed, rain rate and sea ice concentration.This dissertation focuses on the overall radiometric calibration of MWR instrument.Which means establishing a transfer function that relates the instrument output to the antenna brightness temperature (Tb). To achieve this goal, the dissertation describes a microwave radiative transfer model of the instrument and validates it using the laboratory and thermal-vacuum test data. This involves estimation of the losses and physical temperature profile in the path from the receiver to each antenna feed-horn for all the receivers. As the pre-launch laboratory tests can only provide a simulated environment which is very different from the operational environment in space, an on-orbit calibration of the instrument is very important. Inter-satellite radiometric cross-calibration of MWR using the Naval Research Laboratory's multi-frequency polarimetric microwave radiometer, WindSat, on board the Coriolis satellite is also an important part of this dissertation. Cross-calibration between two different satellite instruments require normalization of Tb's to account for the frequency and incidence angle dierence between the instruments. Also inter-satellite calibration helps to determine accurate antenna pattern correction coefficients and other small instrument biases.
Show less - Date Issued
- 2012
- Identifier
- CFE0004200, ucf:49033
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004200
- Title
- SEAWINDS RADIOMETER BRIGHTNESS TEMPERATURE CALIBRATION AND VALIDATION.
- Creator
-
Rastogi, Mayank, Jones, Linwood, University of Central Florida
- Abstract / Description
-
The NASA SeaWinds scatterometer is a radar remote sensor which operates on two satellites; NASA's QuikSCAT launched in June 1999 and on Japan's ADEOS-II satellite launched in December 2002. The purpose of SeaWinds is to provide global measurements of the ocean surface wind vector. On QuikSCAT, a ground data processing algorithm was developed, which allowed the instrument to function as a QuikSCAT Radiometer (QRad) and measure the ocean microwave emissions (brightness temperature, Tb)...
Show moreThe NASA SeaWinds scatterometer is a radar remote sensor which operates on two satellites; NASA's QuikSCAT launched in June 1999 and on Japan's ADEOS-II satellite launched in December 2002. The purpose of SeaWinds is to provide global measurements of the ocean surface wind vector. On QuikSCAT, a ground data processing algorithm was developed, which allowed the instrument to function as a QuikSCAT Radiometer (QRad) and measure the ocean microwave emissions (brightness temperature, Tb) simultaneously with the backscattered power. When SeaWinds on ADEOS was launched, this same algorithm was applied, but the results were anomalous. The initial SRad brightness temperatures exhibited significant, unexpected, ascending/descending orbit Tb biases. This thesis presents an empirical correction algorithm to correct the anomalous SeaWinds Radiometer (SRad) ocean brightness temperature measurements. I use the Advanced Microwave Scanning Radiometer (AMSR) as a brightness temperature standard to calibrate and then, with independent measurements, validate the corrected SRad Tb measurements. AMSR is a well-calibrated multi-frequency, dual-polarized microwave radiometer that also operates on ADEOS-II. These results demonstrate that, after tuning the Tb algorithm, good quality SRad brightness temperature measurements are obtained over the oceans.
Show less - Date Issued
- 2005
- Identifier
- CFE0000689, ucf:46490
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000689
- Title
- WIDE VIEWING ANGLE LIQUID CRYSTAL DISPLAYS.
- Creator
-
Hong, Qi, Wu, Shin-Tson, University of Central Florida
- Abstract / Description
-
In this dissertation, novel phase compensation technologies are applied to the designs of wide viewing angle and high transmittance liquid crystal displays. First, a design of wide viewing angle liquid crystal displays utilizing crossed linear polarizers is proposed. The designed multi-domain vertical-alignment liquid crystal display predicts superb contrast ratio over wide viewing angles. Next, to increase the bright state transmittance while maintain the high contrast. Finally, to reduce...
Show moreIn this dissertation, novel phase compensation technologies are applied to the designs of wide viewing angle and high transmittance liquid crystal displays. First, a design of wide viewing angle liquid crystal displays utilizing crossed linear polarizers is proposed. The designed multi-domain vertical-alignment liquid crystal display predicts superb contrast ratio over wide viewing angles. Next, to increase the bright state transmittance while maintain the high contrast. Finally, to reduce the cost and improve the applicability of the broadband and wide-view circular polarizer, the device configuration of the broadband and wide-view circular polarizer is significantly simplified by the application of biaxial compensation films. The produced states of polarization remain close to the ideal circular polarization over a wide range of incident angles within the visual spectrum. With this circular polarizer, the presented wide-view liquid crystal display predicts high contrast ratio as well as high and uniform transmittance over wide viewing angles within the visual spectrum. ratio, wide viewing angle circular polarizers are developed. The produced states of polarization are very close to the ideal circular state of polarization over a wide range of incident angles within the visual spectrum. This guarantees not only high contrast ratio but also high and uniform transmittance.
Show less - Date Issued
- 2006
- Identifier
- CFE0001378, ucf:46963
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001378
- Title
- DESIGN AND FABRICATION OF SPACE VARIANT MICRO OPTICAL ELEMENTS.
- Creator
-
Srinivasan, Pradeep, LiKamWa, Patrick, University of Central Florida
- Abstract / Description
-
A wide range of applications currently utilize conventional optical elements to individually transform the phase, polarization, and spectral transmission/reflection of the incident radiation to realize the desired system level function. The material properties and the feasibility of fabrication primarily impact the device and system functionality that can be realized. With the advancement in micro/nano patterning, growth, deposition and etching technology, devices with novel and multiplexed...
Show moreA wide range of applications currently utilize conventional optical elements to individually transform the phase, polarization, and spectral transmission/reflection of the incident radiation to realize the desired system level function. The material properties and the feasibility of fabrication primarily impact the device and system functionality that can be realized. With the advancement in micro/nano patterning, growth, deposition and etching technology, devices with novel and multiplexed optical functionalities have become feasible. As a result, it has become possible to engineer the device response in the near and far field by controlling the phase, polarization or spectral response at the micro scale. One of the methods that have been explored to realize unique optical functionalities is by varying the structural properties of the device as a function of spatial location at the sub-micron scale across the device aperture. Spatially varying the structural parameters of these devices is analogous to local modifications of the material properties. In this dissertation, the optical response of interference transmission filters, guided mode resonance reflection filters, and diffraction gratings operated in Littrow condition with strategically introduced spatial variation have been investigated. Spatial variations in optical interference filters were used to demonstrate wavelength tunable spatial filters. The effect was realized by integrating diffractive and continuous phase functions on the defect layer of a one-dimensional photonic crystal structure. Guided mode resonance filters are free space optical filters that provide narrow spectral reflection by combining grating and waveguide dispersion effects. Frequency dependent spatial reflection profiles were achieved by spatially varying the grating fill fraction in designed contours. Diffraction gratings with space variant fill fractions operating in Littrow condition were used to provide graded feedback profiles to improve the beam quality and spatial brightness of broad area diode lasers. The fabrication of space variant structures is challenging and has been accomplished primarily by techniques such as ruling, electron beam writing or complex deposition methods. In order to vary the desired structural parameter in a designed manner, a novel technique for the fabrication of space variant structures using projection lithography with a fidelity that rivals any of the current technologies was also developed as a part of this work. The devices exhibit wavelength dependent beam shaping properties in addition to spatial and spectral filtering and have potential applications in advanced imaging systems, graded reflectivity laser mirrors, and engineered illumination. The design, modeling, microfabrication and experimental characterization of space variant micro optical elements with novel optical functionalities are presented.
Show less - Date Issued
- 2009
- Identifier
- CFE0002843, ucf:48066
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002843
- Title
- Novel solid state lasers based on volume Bragg gratings.
- Creator
-
Hale, Evan, Glebov, Leonid, Divliansky, Ivan, Schulzgen, Axel, Vodopyanov, Konstantin, Lyakh, Arkadiy, University of Central Florida
- Abstract / Description
-
Since their invention in 1960, lasers have revolutionized modern technology, and tremendous amounts of innovation and development has gone into advancing their properties and efficiencies. This dissertation reports on further innovations by presenting novel solid state laser systems based on the volume Bragg gratings (VBGs) and the newly developed holographic phase mask (HPMs) for brightness enhancement, dual wavelength operation, and mode conversion. First, a new optical element was created...
Show moreSince their invention in 1960, lasers have revolutionized modern technology, and tremendous amounts of innovation and development has gone into advancing their properties and efficiencies. This dissertation reports on further innovations by presenting novel solid state laser systems based on the volume Bragg gratings (VBGs) and the newly developed holographic phase mask (HPMs) for brightness enhancement, dual wavelength operation, and mode conversion. First, a new optical element was created by pairing the HPM with two surface gratings creating an achromatic holographic phase mask. This new optical device successfully performed transverse mode conversion of multiple narrow line laser sources operating from 488 to 1550 nm and a broadband mode locked femtosecond source with no angular tuning. Also, two types of HPMs were tested on high power Yb fiber lasers to demonstrate high energy mode conversion.Secondly, the effects of implementing VBGs for brightness enhancement of passively Q-switched systems with large Fresnel numbers was investigated. Implementing VBGs for angular mode selection allowed for higher pulse energies to be extracted without sacrificing brightness and pulse duration. This technique could potentially be applied to construct compact cavities with 1 cm diameter beams and nearly diffraction limited beam quality.Lastly, a spectral beam combining approach was applied to create Tm3+ and Yb3+ based narrowband dual-wavelength pump sources for terahertz generation, using VBGs as frequency selectors and beam combiners. Comparison of pulse duration and synchronization was done between passive and active Q-switching operation. An experimental set up for THz generation and detection using high sensitive detectors was created, and modeling of terahertz conversion efficiencies were done
Show less - Date Issued
- 2019
- Identifier
- CFE0007812, ucf:52333
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007812