Current Search: chalcogenide (x)
View All Items
- Title
- FABRICATION OF INTEGRATED OPTOFLUIDIC CIRCUITS IN CHALCOGENIDE GLASS USING FEMTOSECOND LASER DIRECT WRITING.
- Creator
-
Anderson, Troy, Richardson, Martin, University of Central Florida
- Abstract / Description
-
Femtosecond laser direct writing (FLDW) is a versatile process that uses focused femtosecond pulses to modify the physical structure of a material, which can result in a shift of optical properties such as the linear and nonlinear refractive index. If the photon energy of the femtosecond pulses lies below the material bandgap, nonlinear absorption rather than linear absorption becomes the dominant mechanism of energy transfer to the material. In this manner, a focused femtosecond pulse train...
Show moreFemtosecond laser direct writing (FLDW) is a versatile process that uses focused femtosecond pulses to modify the physical structure of a material, which can result in a shift of optical properties such as the linear and nonlinear refractive index. If the photon energy of the femtosecond pulses lies below the material bandgap, nonlinear absorption rather than linear absorption becomes the dominant mechanism of energy transfer to the material. In this manner, a focused femtosecond pulse train can be used to fabricate functional features such as optical waveguides, diffractive optical elements, or micro-fluidic elements within the volume of a transparent medium. In this dissertation, the utility of femtosecond laser processing as a fabrication technique of optical and micro-fluidic elements in chalcogenide glasses is explored. The photo-induced modifications of optical and chemical parameters of new germanium-based Chalcogenide glasses in both bulk and thin-film form are characterized for the first time and the impact of material composition and laser fabrication parameters are discussed. The glasses are found to display an increase in volume, a decrease of the linear optical refractive index, and an increase of the nonlinear refractive index when exposed to femtosecond laser pulses. A model based on avalanche ionization and multi-photon ionization is used to describe the highly nonlinear absorption of laser light in the material and correlate the photo-induced modifications to the electron density generated during irradiation. The magnitude of the induced photo- modification is shown to be dependent on laser parameters such as laser dose and repetition rate. The fabrication of microfluidic elements through both direct ablation and the preferential etching of photo-modified regions is also explored. Finally, the integration of both optical elements and fluidic elements fabricated by FLDW into a single substrate is discussed.
Show less - Date Issued
- 2010
- Identifier
- CFE0002978, ucf:47965
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002978
- Title
- Laser-induced crystallization mechanisms in chalcogenide glass materials for advanced optical functionality.
- Creator
-
Sisken, Laura, Richardson, Kathleen, Richardson, Martin, Shah, Lawrence, University of Central Florida
- Abstract / Description
-
Glass-ceramics (GC) are promising candidates for gradient refractive index (GRIN) optics. These multi-phase, composite materials also exhibit improved physical properties as compared to the parent base glass resulting from the formation of a secondary crystalline phase(s). Nanocrystal phase formation in a multi-component chalcogenide glass (ChG), (GeSe2-3As2Se3)(1-x)-(PbSe)x glass where x = 0-40 has been investigated, and the role of the starting material morphology has been correlated to the...
Show moreGlass-ceramics (GC) are promising candidates for gradient refractive index (GRIN) optics. These multi-phase, composite materials also exhibit improved physical properties as compared to the parent base glass resulting from the formation of a secondary crystalline phase(s). Nanocrystal phase formation in a multi-component chalcogenide glass (ChG), (GeSe2-3As2Se3)(1-x)-(PbSe)x glass where x = 0-40 has been investigated, and the role of the starting material morphology has been correlated to the resulting composite's optical properties including refractive index, transmission, dispersion, and thermo-optic coefficient. Optical property evolution was related to the type and amount of the crystal phases formed, since through control of the local volume fraction of crystalline phase(s), the effective material properties of the composite can locally be varied. Through computational and experimental studies, tailored nanocomposites exhibiting gradient index properties have been realized. A Raman spectroscopic technique was developed as a means to spatially quantify the extent of conversion from glass to glass ceramic, and to confirm that the scale length of the local refractive index modification can be correlated to the extent of crystallization as validated by X-ray diffraction (XRD). Spatial control of the crystallization was examined by using a laser to locally modify the amount of nucleation and/or growth of crystallites in the glass. A novel technique converse to laser-induced crystallization was also developed and demonstrated that a glass ceramic could be locally re-vitrified back to a fully glassy state, through a laser-induced vitrification (LIV) method. Proof-of-concept demonstrator optics were developed using furnace and laser induced crystallization methods to validate experimental and computational approaches to modify the local volume fraction of nano-crystals. These demonstrators exhibited tailorable optical functionality as focusing optics and diffractive optics. This work paves the way for the design and fabrication of nanocomposite GRIN optics and their use in the mid-wave infrared.
Show less - Date Issued
- 2017
- Identifier
- CFE0006916, ucf:51684
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006916
- Title
- EVALUATION OF THE PHOTO-INDUCED STRUCTURAL MECHANISMS IN CHALCOGENIDE GLASS MATERIALS.
- Creator
-
Lopez, Cedric, Richardson, Kathleen, University of Central Florida
- Abstract / Description
-
Chalcogenide glasses and their use in a wide range of optical, electronic and memory applications, has created a need for a more thorough understanding of material property variation as a function of composition and in geometries representative of actual devices. This study evaluates compositional dependencies and photo-induced structural mechanisms in As-S-Se chalcogenide glasses. An effective fabrication method for the reproducible processing of bulk chalcogenide materials has been...
Show moreChalcogenide glasses and their use in a wide range of optical, electronic and memory applications, has created a need for a more thorough understanding of material property variation as a function of composition and in geometries representative of actual devices. This study evaluates compositional dependencies and photo-induced structural mechanisms in As-S-Se chalcogenide glasses. An effective fabrication method for the reproducible processing of bulk chalcogenide materials has been demonstrated and an array of tools developed, for the systematic characterization of the resulting material's physical and optical properties. The influence of compositional variation on the physical properties of 13 glasses within the As-S-Se system has been established. Key structural and optical differences have been observed and quantified between bulk glasses and their corresponding as-deposited films. The importance of annealing and aging of the film material and the impact on photosentivity and long term behavior important to subsequent device stability have been evaluated. Photo-induced structures have been created in the thin films using bandgap cw and sub-bandgap femtosecond laser sources and the exposure conditions and their influence on the post-exposure material properties, have been found to have different limitations and driving mechanisms. These mechanisms largely depend on both structural and/or electronic defects, whether initially present in the chalcogenide material or created upon exposure. These defect processes, largely studied previously in individual binary material systems, have now been shown to be consistently present, but varying in extent, across the ternary glass compositions and exposure conditions examined. We thus establish the varying photo-response of these defects as being the major reason for the optical variations observed. Nonlinear optical material properties, as related to the multiphoton processes used in our exposure studies, have been modeled and a tentative explanation for their variation in the context of composition and method of evaluation is presented.
Show less - Date Issued
- 2004
- Identifier
- CFE0000196, ucf:46177
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000196
- Title
- DIRECT NONLINEAR OPTICS MEASUREMENTS OF RAMAN GAIN IN BULK GLASSES AND ESTIMATES OF FIBER PERFORMANCE.
- Creator
-
Stegeman, Robert, Delfyett, Peter, University of Central Florida
- Abstract / Description
-
The need for more bandwidth in communications has stimulated the search for new fiberizable materials with properties superior to fused silica which is the current state-of-the-art. One of the key properties is Raman gain by which a pump beam amplifies a signal beam of longer wavelength. An apparatus capable of directly measuring the spectral dependence and absolute magnitude of the material Raman gain coefficient using nonlinear optics techniques has been built. Using radiation from a 1064...
Show moreThe need for more bandwidth in communications has stimulated the search for new fiberizable materials with properties superior to fused silica which is the current state-of-the-art. One of the key properties is Raman gain by which a pump beam amplifies a signal beam of longer wavelength. An apparatus capable of directly measuring the spectral dependence and absolute magnitude of the material Raman gain coefficient using nonlinear optics techniques has been built. Using radiation from a 1064 nm Nd:YAG laser as the pump and from a tunable Optical Parametric Generator and Amplifier as the signal, the Raman gain spectrum was measured for different families of glass samples with millimeter thickness. A number of glass families were investigated. Tellurites with added oxides of tungsten, niobium, and thallium produced the largest Raman gain coefficients of any oxide family reported to date, typically 30-50 times higher than that of fused silica. On the other hand, phosphate families were found with spectrally broad Raman gain response, 5 times broader than fused silica and flat to b3dB over the full spectral range in some compositions. Although the chalcogenides were found to photodamage easily, coefficients 50 - 80 times that of fused silica were measured. Finally, a numerical study was undertaken to predict the theoretical performance and noise properties of tellurite fibers for communications. Included in the computer modeling were linear loss; the interaction among multiple pumps and signals; forward and/or backward propagating pump beams; forward, backward and double Rayleigh scattering; noise properties of amplifiers; excess noise, etc. This led to a comparison of the optical signal-to-noise characteristics for Raman gain in a tellurite versus a silica fiber.
Show less - Date Issued
- 2006
- Identifier
- CFE0000928, ucf:46739
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000928
- Title
- A Study of Crystallization Behavior in Phase Separated Chalcogenide Glasses.
- Creator
-
Buff, Andrew, Richardson, Kathleen, Sohn, Yongho, Gaume, Romain, Fargin, Evelyne, University of Central Florida
- Abstract / Description
-
Chalcogenide glasses (ChG) are known for their wide transmission ranges in the infrared and for their high refractive indices. However, applications for ChG are often limited by their poor thermal/mechanical properties. Precipitating a secondary crystalline phase in the glass matrix can improve these properties, but too much crystallization and/or large or multiple phase crystallites can lead to a loss in infrared (IR) transmission. Controlled crystallization can be used to tune the...
Show moreChalcogenide glasses (ChG) are known for their wide transmission ranges in the infrared and for their high refractive indices. However, applications for ChG are often limited by their poor thermal/mechanical properties. Precipitating a secondary crystalline phase in the glass matrix can improve these properties, but too much crystallization and/or large or multiple phase crystallites can lead to a loss in infrared (IR) transmission. Controlled crystallization can be used to tune the properties of these glasses. This work examines the crystallization behavior in phase separated chalcogenide glasses in the GeSe2-As2Se3-PbSe glass system.Specifically, the research presented in this thesis work has investigated the crystallization behavior in the 20GeSe2-60As2Se3-20PbSe (20 PbSe) and 15GeSe2-45As2Se3-40PbSe (40 PbSe) glasses for an IR optical system operating in the 3 to 5 (&)#181;m range. While both of these glasses were found to have droplet-matrix phase separation, the morphology differed from each other in two key ways. First, the droplets seen in the 20 PbSe glass (100-130 nm) are roughly twice as big as those in the 40 PbSe glass (35-45 nm). The droplet sizes seen in the base glass directly affect the short wavelength cutoff of the two glasses where the 20 PbSe glass (1.993 (&)#181;m) has a longer wavelength cutoff than the 40 PbSe (1.319 (&)#181;m). Secondly, the 20 PbSe glass has Pb-rich droplets and the 40 PbSe glass has a Pb-rich matrix, impacting where the initial stages of crystallization are initiated. Crystallization occurs in the Pb-rich phase and affects the glass-ceramic properties differently depending on whether the Pb-rich phase is the minority phase (20 PbSe) or the majority phase (40 PbSe). When the crystallization occurs in the majority phase, it greatly affects the hardness, density, and refractive index. When the crystallization occurs in the minority phase, the hardness and density change negligibly while the refractive index still shows significant change. While both glasses show an effective index change and 3-5 (&)#181;m transmission in their base form, only the 40 PbSe maintains the transmission window after the heat-treatments used in this study.The work reported in this thesis has shown how the crystallization process can be used to develop a gradient refractive index (GRIN) component in an IR optical system. While the composition and crystallization protocols are not optimized for further transfer of the technology to commercial products, the basis of this work shows the process of developing a glass-ceramic for the application.
Show less - Date Issued
- 2016
- Identifier
- CFE0006271, ucf:51032
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006271
- Title
- Distribution of Laser Induced Heating in Multi-Component Chalcogenide Glass and its Associated Effects.
- Creator
-
Sisken, Laura, Richardson, Kathleen, Richardson, Martin, Shah, Lawrence, University of Central Florida
- Abstract / Description
-
Chalcogenide glasses are well known to have good transparency into the infrared spectrum. These glasses though tend to have low thresholds as compared to oxide glasses for photo-induced changes and thermally-induced changes. Material modification such as photo-induced darkening, bleaching, refractive index change, densification or expansion, ablation of crystallization have been demonstrated, and are typically induced by a thermal furnace-based heat treatment, an optical source such as a...
Show moreChalcogenide glasses are well known to have good transparency into the infrared spectrum. These glasses though tend to have low thresholds as compared to oxide glasses for photo-induced changes and thermally-induced changes. Material modification such as photo-induced darkening, bleaching, refractive index change, densification or expansion, ablation of crystallization have been demonstrated, and are typically induced by a thermal furnace-based heat treatment, an optical source such as a laser, or a combination of photo-thermal interactions. Solely employing laser-based heating has an advantage over a furnace, since one has the potential to be able to spatially modify the materials properties with much greater precision by moving either the beam or the sample.The main properties of ChG glasses investigated in this study were the light-induced and thermally-induced modification of the glass through visible microscopy, white light interferometry, and Raman spectroscopy. Additionally computational models were developed in order to aid in determining what temperature rise should be occurring under the conditions used in experiments.It was seen that ablation, photo-expansion, crystallization, and melting could occur for some of the irradiation conditions that were used. The above bandgap energy simulations appeared to overestimate the maximum temperature that should have been reached in the sample, while the below bandgap energy simulations appeared to underestimate the maximum temperature that should have been reached in the sample. Ultimately, this work produces the ground work to be able to predict and control dose, and therefore heating, to induce localized crystallization and phase change.
Show less - Date Issued
- 2014
- Identifier
- CFE0005261, ucf:50606
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005261
- Title
- Design of surface chemical reactivity and optical properties in glasses.
- Creator
-
Lepicard, Antoine, Richardson, Kathleen, Seal, Sudipta, Gaume, Romain, Dussauze, Marc, Kuebler, Stephen, University of Central Florida
- Abstract / Description
-
Thermal poling is a technique which involves the application of a strong DC electric field to a glass substrate heated below its glass transition temperature (Tg). Following the treatment, a static electric field is frozen inside the glass matrix, effectively breaking its centrosymmetry. Historically, this treatment has been used as a way to gain access to second order non-linear optical properties in glasses. However, recent efforts have shown that the treatment was responsible for...
Show moreThermal poling is a technique which involves the application of a strong DC electric field to a glass substrate heated below its glass transition temperature (Tg). Following the treatment, a static electric field is frozen inside the glass matrix, effectively breaking its centrosymmetry. Historically, this treatment has been used as a way to gain access to second order non-linear optical properties in glasses. However, recent efforts have shown that the treatment was responsible for structural changes as well as surface property modifications. Our study was focused on using this technique to tailor surface properties in oxide (borosilicate and niobium borophosphate) and chalcogenide glasses. A strong emphasis was put on trying to control all changes at the micrometric scale. After poling, property changes were assessed using a set of characterization tools: the Maker fringes technique (a Second Harmonic Generation ellipsometry technique), micro-Second Harmonic Generation ((&)#181;-SHG), vibrational spectroscopy and Secondary Ion Mass Spectroscopy (SIMS). Surface reactivity in borosilicate glasses was effectively changed while in niobium borophosphate and chalcogenide glasses, the optical properties were controlled linearly and nonlinearly. Finally, property changes were effectively controlled at the micrometric scale. This opens up new applications of thermal poling as a mean to design glass substrate for integrated photonics and lab-on-a-chip devices.
Show less - Date Issued
- 2016
- Identifier
- CFE0006471, ucf:51435
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006471
- Title
- TOWARDS DIRECT WRITING OF 3-D PHOTONIC CIRCUITS USING ULTRAFAST LASERS.
- Creator
-
Zoubir, Arnaud, Richardson, Martin, University of Central Florida
- Abstract / Description
-
The advent of ultrafast lasers has enabled micromachining schemes that cannot be achieved by other current techniques. Laser direct writing has emerged as one of the possible routes for fabrication of optical waveguides in transparent materials. In this thesis, the advantages and limitations of this technique are explored. Two extended-cavity ultrafast lasers were built and characterized as the laser sources for this study, with improved performance over existing systems. Waveguides are...
Show moreThe advent of ultrafast lasers has enabled micromachining schemes that cannot be achieved by other current techniques. Laser direct writing has emerged as one of the possible routes for fabrication of optical waveguides in transparent materials. In this thesis, the advantages and limitations of this technique are explored. Two extended-cavity ultrafast lasers were built and characterized as the laser sources for this study, with improved performance over existing systems. Waveguides are fabricated in oxide glass, chalcogenide glass, and polymers, these being the three major classes of materials for the telecommunication industry. Standard waveguide metrology is performed on the fabricated waveguides, including refractive index profiling and mode analysis. Furthermore, a finite-difference beam propagation method for wave propagation in 3D-waveguides is proposed. The photo-structural modifications underlying the changes in the material optical properties after exposure are investigated. The highly nonlinear processes of the light/matter interaction during the writing process are described using a free electron model. UV/visible absorption spectroscopy, photoluminescence spectroscopy and Raman spectroscopy are used to assess the changes occurring at the atomic level. Finally, the impact of laser direct writing on nonlinear waveguide applications is discussed.
Show less - Date Issued
- 2004
- Identifier
- CFE0000236, ucf:46252
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000236
- Title
- Hybrid integration of second- and third-order highly nonlinear waveguides on silicon substrates.
- Creator
-
Camacho Gonzalez, Guillermo Fernando, Fathpour, Sasan, Likamwa, Patrick, Amezcua Correa, Rodrigo, Peale, Robert, University of Central Florida
- Abstract / Description
-
In order to extend the capabilities and applications of silicon photonics, other materials and compatible technologies have been developed and integrated on silicon substrates. A particular class of integrable materials are those with high second- and third-order nonlinear optical properties. This work presents contributions made to nonlinear integrated photonics on silicon substrates, including chalcogenide waveguides for over an octave supercontinuum generation, and rib-loaded thin-film...
Show moreIn order to extend the capabilities and applications of silicon photonics, other materials and compatible technologies have been developed and integrated on silicon substrates. A particular class of integrable materials are those with high second- and third-order nonlinear optical properties. This work presents contributions made to nonlinear integrated photonics on silicon substrates, including chalcogenide waveguides for over an octave supercontinuum generation, and rib-loaded thin-film lithium niobate waveguides for highly efficient second-harmonic generation. Through the pursuit of hybrid integration of the two types of waveguides for applications such as on-chip self-referenced optical frequency combs, we have experimentally demonstrated fabrication integrability of chalcogenide and thin-film lithium niobate waveguides in a single chip and a pathway for both second- and third-order nonlinearities occurring therein. Accordingly, design specifications for an efficient nonlinear integrated waveguide are reported, showing over an octave supercontinuum generation and frequency selectivity for second-harmonic generation, enabling potentials of on-chip interferometry techniques for carrier-envelope offset detection, and hence stabilized optical combs.
Show less - Date Issued
- 2019
- Identifier
- CFE0007607, ucf:52560
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007607
- Title
- Multimaterial Fibers and Tapers A Platform for Nonlinear Photonics and Nanotechnology.
- Creator
-
Shabahang, Soroush, Abouraddy, Ayman, Vanstryland, Eric, Dogariu, Aristide, Belfield, Kevin, University of Central Florida
- Abstract / Description
-
The development of optical sources and components suitable for the mid-infrared is crucial for applications in this spectral range to reach the maturity level of their counterparts in the visible and near-infrared spectral regimes. The recent commercialization of quantum cascade lasers is leading to further interest in this spectral range. Wideband mid-infrared coherent sources, such as supercontinuum generation, have yet to be fully developed. A mid-infrared supercontinuum source would allow...
Show moreThe development of optical sources and components suitable for the mid-infrared is crucial for applications in this spectral range to reach the maturity level of their counterparts in the visible and near-infrared spectral regimes. The recent commercialization of quantum cascade lasers is leading to further interest in this spectral range. Wideband mid-infrared coherent sources, such as supercontinuum generation, have yet to be fully developed. A mid-infrared supercontinuum source would allow for unique applications in spectroscopy and sensing.Over the last decade, it has been shown that high-index confinement in highly nonlinear fibers pumped with high-peak-power pulses is an excellent approach to supercontinuum generation in the visible and near-infrared. Nonlinear waveguides such as fibers offer an obvious advantage in increasing the nonlinear interaction length maintained with a small cross section. In addition, fiber systems do not require optical alignment and are mechanically stable and robust with respect to the environmental changes. These properties have made fiber systems unique in applications where they are implemented in a harsh and unstable environment.In extending this approach into the mid-infrared, I have used chalcogenide glass fibers. Chalcogenide glasses have several attractive features for this application: they have high refractive indices for high optical-confinement, have a wide transparency window in the mid-infrared, and have a few orders-of-magnitude higher nonlinearity than silica glass and other mid-IR glasses. Producing chalcogenide glass fiber tapers offer, furthermore, the possibility of dispersion control and stronger field confinement and hence higher nonlinearity, desired for supercontinuum generation.
Show less - Date Issued
- 2014
- Identifier
- CFE0005252, ucf:50594
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005252