Current Search: cognitive workload (x)
View All Items
- Title
- Understanding Human Performance and Social Presence: An Analysis of Vigilance and Social Facilitation.
- Creator
-
Claypoole, Victoria, Szalma, James, Mouloua, Mustapha, Sims, Valerie, Hancock, Peter, Joseph, Dana, University of Central Florida
- Abstract / Description
-
Social facilitation is characterized by improved performance on simple, or well-known, tasks and impaired performance on complex, or unfamiliar, tasks. Previous research has demonstrated that the use of social presence may improve performance on cognitive-based tasks that are relevant to many organizational contexts, such as vigilance. However, to date, there has not been consolidation of the research regarding the different implementations of social facilitation, or any analysis indicating...
Show moreSocial facilitation is characterized by improved performance on simple, or well-known, tasks and impaired performance on complex, or unfamiliar, tasks. Previous research has demonstrated that the use of social presence may improve performance on cognitive-based tasks that are relevant to many organizational contexts, such as vigilance. However, to date, there has not been consolidation of the research regarding the different implementations of social facilitation, or any analysis indicating which types of social presence are best under varying conditions. The present dissertation describes three experiments that seek to contribute to a taxonomic framework of social facilitation. Experiment One statistically established a difference in task difficulty between twoversions of a cognitive-based vigilance task by utilizing increasing increments of event rate in order to examine the first factor of the taxonomy (i.e., level of difficulty). Experiment Two explored the effects of two novel manipulations of social presence, electronic performance monitoring (i.e., EPM) and co-acting, in order to demonstrate that both novel forms of social presence could improve performance, and were worth examining further. Finally, ExperimentThree replicated and extended the results of Experiments One and Two by examining the interaction effects of levels of task difficulty and social presence through the use of ten conditions. Overall the results indicates that multiple forms of social presence can improve cognitive performance, however, this effect was not moderated by the level of task difficulty, as suggestedby the predominant theories of social facilitation. This suggests that future work should seek to replicate and extend this finding in order to determine if the level of task difficult is indeed a moderating variable of social facilitation. Additionally, the results demonstrated that social presence could be used in organizational settings in order to improve employee performance, while also sometimes reducing the perceived workload associated with the task.
Show less - Date Issued
- 2018
- Identifier
- CFE0006989, ucf:51631
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006989
- Title
- The Effects of Presentation Mode and Pace on Learning Immunology with Computer Simulation: A Cognitive Evaluation of a Multimedia Learning Resource.
- Creator
-
Bradley-Radakovich, Kristy, Kincaid, John, Khaled, Annette, McDaniel, Rudy, Greenwood-Ericksen, Adams, University of Central Florida
- Abstract / Description
-
Multimedia learning tools have the potential to benefit instructors and learners as supplemental learning materials. However, when such tools are designed inappropriately, this can increase cognitive taxation and impede learning, rendering the tools ineffective. Guided by the theoretical underpinnings provided by cognitive load theory and the cognitive theory of multimedia learning, this study sought to empirically evaluate the effectiveness of a multimedia simulation tool aimed at teaching...
Show moreMultimedia learning tools have the potential to benefit instructors and learners as supplemental learning materials. However, when such tools are designed inappropriately, this can increase cognitive taxation and impede learning, rendering the tools ineffective. Guided by the theoretical underpinnings provided by cognitive load theory and the cognitive theory of multimedia learning, this study sought to empirically evaluate the effectiveness of a multimedia simulation tool aimed at teaching immunology to novices in an instructional setting. The instructional mode and pace of the tool were manipulated, the three levels of each variable yielding nine experimental groups. The effects of mode and pace on workload and learning scores were observed. The results of this study did not support the theory-driven hypotheses. No significant learning gains were found between the configuration groups, however overall significant learning gains were subsequently found when disregarding mode and pace configuration. Pace was found to influence workload such that fast pace presentations significantly increased workload ratings and a significant interaction of mode and pace was found for workload ratings. The findings suggest that the learning material was too high in intrinsic load and the working memory of the learners too highly taxed for the benefits of applying the design principles to be observed. Results also illustrate a potential exception to the conditions of the design principles when complex terminology is to be presented. Workload findings interpreted in the context of stress adaptation potentially indicate points at which learners at maximum capacity begin to exhibit performance decrements.
Show less - Date Issued
- 2011
- Identifier
- CFE0004090, ucf:49150
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004090
- Title
- PREDICTING COGNITIVE WORKLOAD WITH MEASURES FROM FUNCTIONAL NEAR-INFRARED SPECTROSCOPY (FNIRS) AND HEART RATE.
- Creator
-
Duany, John, Bohil, Corey, University of Central Florida
- Abstract / Description
-
The objective of this study was to assess low to high levels of Cognitive Workload by measuring heart rate and cortical blood flow in real-time. Four conditions were implemented into a within-subjects experimental design. Two conditions of difficulty and two conditions of trial order were used to illicit different levels of workload which will be analyzed with psychophysiological equipment. Functional Near-Infrared Spectroscopy (fNIRS) has become more prominent for measuring the blood...
Show moreThe objective of this study was to assess low to high levels of Cognitive Workload by measuring heart rate and cortical blood flow in real-time. Four conditions were implemented into a within-subjects experimental design. Two conditions of difficulty and two conditions of trial order were used to illicit different levels of workload which will be analyzed with psychophysiological equipment. Functional Near-Infrared Spectroscopy (fNIRS) has become more prominent for measuring the blood oxygenation levels in the prefrontal cortex of individuals operating in hazardous work environments, students with learning disabilities, and in research for military training. This is due to the fNIR device being highly mobile, inexpensive, and able to produce a high-spatial resolution of the dorsolateral prefrontal cortex during executive functioning. Heart Rate will be measured by an Electrocardiogram, which will be used in concordance with fNIR oxygenation levels to predict if an individual is in a condition that produces low or high mental workload. Successfully utilizing heart rate and blood oxygenation data as predictors of cognitive workload may validate implementing multiple physiological devices together in real-time and may be a more accurate solution for preventing excessive workload.
Show less - Date Issued
- 2013
- Identifier
- CFH0004478, ucf:45070
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004478
- Title
- Simulation-Based Cognitive Workload Modeling and Evaluation of Adaptive Automation Invoking and Revoking Strategies.
- Creator
-
Rusnock, Christina, Geiger, Christopher, Karwowski, Waldemar, Xanthopoulos, Petros, Reinerman, Lauren, University of Central Florida
- Abstract / Description
-
In human-computer systems, such as supervisory control systems, large volumes of incoming and complex information can degrade overall system performance. Strategically integrating automation to offload tasks from the operator has been shown to increase not only human performance but also operator efficiency and safety. However, increased automation allows for increased task complexity, which can lead to high cognitive workload and degradation of situational awareness. Adaptive automation is...
Show moreIn human-computer systems, such as supervisory control systems, large volumes of incoming and complex information can degrade overall system performance. Strategically integrating automation to offload tasks from the operator has been shown to increase not only human performance but also operator efficiency and safety. However, increased automation allows for increased task complexity, which can lead to high cognitive workload and degradation of situational awareness. Adaptive automation is one potential solution to resolve these issues, while maintaining the benefits of traditional automation. Adaptive automation occurs dynamically, with the quantity of automated tasks changing in real-time to meet performance or workload goals. While numerous studies evaluate the relative performance of manual and adaptive systems, little attention has focused on the implications of selecting particular invoking or revoking strategies for adaptive automation. Thus, evaluations of adaptive systems tend to focus on the relative performance among multiple systems rather than the relative performance within a system.This study takes an intra-system approach specifically evaluating the relationship between cognitive workload and situational awareness that occurs when selecting a particular invoking-revoking strategy for an adaptive system. The case scenario is a human supervisory control situation that involves a system operator who receives and interprets intelligence outputs from multiple unmanned assets, and then identifies and reports potential threats and changes in the environment. In order to investigate this relationship between workload and situational awareness, discrete event simulation (DES) is used. DES is a standard technique in the analysis of systems, and the advantage of using DES to explore this relationship is that it can represent a human-computer system as the state of the system evolves over time. Furthermore, and most importantly, a well-designed DES model can represent the human operators, the tasks to be performed, and the cognitive demands placed on the operators. In addition to evaluating the cognitive workload to situational awareness tradeoff, this research demonstrates that DES can quite effectively model and predict human cognitive workload, specifically for system evaluation.This research finds that the predicted workload of the DES models highly correlates with well-established subjective measures and is more predictive of cognitive workload than numerous physiological measures. This research then uses the validated DES models to explore and predict the cognitive workload impacts of adaptive automation through various invoking and revoking strategies. The study provides insights into the workload-situational awareness tradeoffs that occur when selecting particular invoking and revoking strategies. First, in order to establish an appropriate target workload range, it is necessary to account for both performance goals and the portion of the workload-performance curve for the task in question. Second, establishing an invoking threshold may require a tradeoff between workload and situational awareness, which is influenced by the task's location on the workload-situational awareness continuum. Finally, this study finds that revoking strategies differ in their ability to achieve workload and situational awareness goals. For the case scenario examined, revoking strategies based on duration are best suited to improve workload, while revoking strategies based on revoking thresholds are better for maintaining situational awareness.
Show less - Date Issued
- 2013
- Identifier
- CFE0004927, ucf:49607
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004927
- Title
- Investigating the universality and comprehensive ability of measures to assess the state of workload.
- Creator
-
Abich, Julian, Reinerman, Lauren, Lackey, Stephanie, Szalma, James, Taylor, Grant, University of Central Florida
- Abstract / Description
-
Measures of workload have been developed on the basis of the various definitions, some are designed to capture the multi-dimensional aspects of a unitary resource pool (Kahneman, 1973) while others are developed on the basis of multiple resource theory (Wickens, 2002). Although many theory based workload measures exist, others have often been constructed to serve the purpose of specific experimental tasks. As a result, it is likely that not every workload measure is reliable and valid for all...
Show moreMeasures of workload have been developed on the basis of the various definitions, some are designed to capture the multi-dimensional aspects of a unitary resource pool (Kahneman, 1973) while others are developed on the basis of multiple resource theory (Wickens, 2002). Although many theory based workload measures exist, others have often been constructed to serve the purpose of specific experimental tasks. As a result, it is likely that not every workload measure is reliable and valid for all tasks, much less each domain. To date, no single measure, systematically tested across experimental tasks, domains, and other measures is considered a universal measure of workload. Most researchers would argue that multiple measures from various categories should be applied to a given task to comprehensively assess workload. The goal for Study 1 to establish task load manipulations for two theoretically different tasks that induce distinct levels of workload assessed by both subjective and performance measures was successful. The results of the subjective responses support standardization and validation of the tasks and demands of that task for investigating workload. After investigating the use of subjective and objective measures of workload to identify a universal and comprehensive measure or set of measures, based on Study 2, it can only be concluded that not one or a set of measures exists. Arguably, it is not to say that one will never be conceived and developed, but at this time, one does not reside in the psychometric catalog. Instead, it appears that a more suitable approach is to customize a set of workload measures based on the task. The novel approach of assessing the sensitivity and comprehensive ability of conjointly utilizing subjective, performance, and physiological workload measures for theoretically different tasks within the same domain contributes to the theory by laying the foundation for improving methodology for researching workload. The applicable contribution of this project is a stepping-stone towards developing complex profiles of workload for use in closed-loop systems, such as human-robot team interaction. Identifying the best combination of workload measures enables human factors practitioners, trainers, and task designers to improve methodology and evaluation of system designs, training requirements, and personnel selection.
Show less - Date Issued
- 2013
- Identifier
- CFE0005119, ucf:50675
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005119