Current Search: compounds (x)
-
-
Title
-
Advancements in Liquid Chromatography for the Determination of Polycyclic Aromatic Compounds in Environmental Samples.
-
Creator
-
Hayes, Hugh, Campiglia, Andres, Harper, James, Yestrebsky, Cherie, Frazer, Andrew, Coffey, Kevin, University of Central Florida
-
Abstract / Description
-
The purpose of this dissertation is to provide a new and improved analytical methodology for the analysis of polycyclic aromatic hydrocarbons (PAHs) and polycyclic aromatic sulfur heterocycles (PASHs) in environmental samples. Hundreds of PAHs and PASHs are present in the environment and have great toxicological importance and the chemical determination of these components is a priority. The complete normal-phase liquid chromatography (NPLC) retention behavior has been explored for these...
Show moreThe purpose of this dissertation is to provide a new and improved analytical methodology for the analysis of polycyclic aromatic hydrocarbons (PAHs) and polycyclic aromatic sulfur heterocycles (PASHs) in environmental samples. Hundreds of PAHs and PASHs are present in the environment and have great toxicological importance and the chemical determination of these components is a priority. The complete normal-phase liquid chromatography (NPLC) retention behavior has been explored for these compounds. Retention indices were determined for 124 PAHs, 62 methyl-PAHs (MePAHs), 67 PASHs, and 80 alkyl-PASHs on an aminopropyl (NH2) stationary phase which represents the most comprehensive study of polycyclic aromatic compounds in normal phase conditions to date. NPLC retention behavior for PAHs and PASHs directly correlated to the total number of aromatic carbons in the parent structures. The normal-phase retention behavior information was used to develop an NPLC fractionation procedure to aid in the sample cleanup for complex environmental matrices which can later be analyzed by gas chromatography/mass spectrometry (GC/MS). Standard Reference Material (SRM) 1597a (complex mixture of PAHs in coal tar), SRM 1991 (coal tar/petroleum extract), and SRM 1975 (diesel particulate extract) were analyzed before and after NPLC fractionation by using GC/MS. In SRM 1597a, the NPLC-GC/MS method allowed for the identification of 72 PAHs, 56 Me-PAHs, 35 PASHs, and 59 alkyl-PASHs. The NPLC-GC/MS procedure also provided the tentative identification of 74 PAHs and 117 MePAHs based on the molecular ion peak only. Furthermore, this method allowed for the following identification breakdown: SRM 1991(-)31 PASHs and 58 alkyl-PASHs; and SRM 1975(-)13 PASHs and 25 alkyl-PASHs.Additional work related to the NPLC fractionation of SRM 1597 included the collection of room-temperature fluorescence spectra for the 21 PAHs with molecular mass (MM) 302 Da known to be in SRM 1597a during reversed-phase liquid chromatography (RPLC) separation. Adding spectral features to a chromatographic run provided the tentative identification of 20 PAHs based on retention times and the presence of 18 were confirmed on the basis of spectral profiles. The advancements in liquid chromatography presented in this dissertation via NPLC fractionation along with RPLC stop-flow fluorescence spectra collection shows potential for becoming routine methodologies for PAC determination in complex environmental samples.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007190, ucf:52244
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007190
-
-
Title
-
A study of organo-phosphorous simulants thermal destruction using shock tube/laser diagnostics techniques and chemical kinetics modeling.
-
Creator
-
Neupane, Sneha, Vasu Sumathi, Subith, Kassab, Alain, Chow, Louis, Peale, Robert, University of Central Florida
-
Abstract / Description
-
High-fidelity chemical kinetic models are critical in predictive modeling during design and optimization of next generation energy systems. Shock tube provides an ideal tool to investigate high-temperature chemical kinetics. Non-intrusive laser absorption diagnostics provide in-situ measurements of quantitative, time-resolved species concentration data in this complex chemically reacting system. In this work, shock tube and laser absorption spectroscopy were utilized to measure species...
Show moreHigh-fidelity chemical kinetic models are critical in predictive modeling during design and optimization of next generation energy systems. Shock tube provides an ideal tool to investigate high-temperature chemical kinetics. Non-intrusive laser absorption diagnostics provide in-situ measurements of quantitative, time-resolved species concentration data in this complex chemically reacting system. In this work, shock tube and laser absorption spectroscopy were utilized to measure species concentration time-histories during pyrolysis and oxidation of organo-phosphorous compounds (OPCs). The experiments data obtained were used as benchmark to develop an improved kinetic model of OPCs combustion. Interest in combustion chemistry of OPCs is associated to their use as fire suppressants and as chemical weapons. Pyrolysis and oxidation of OPCs were carried out behind reflected shock wave and laser absorption spectroscopy utilizing quantum cascade laser at mid-IR wavelength region was used to measure time resolved intermediate CO concentration produced during the process. Utilizing the experiments data, an improved chemical kinetic model for combustion of an OPC (-) Triethyl Phosphate (TEP) was developed. Various steps taken to develop the improved model include: calculation of thermochemical properties; updating hydrocarbon kinetics; calculation of reaction rates and addition of alternative TEP decomposition pathways. The prediction of TEP combustion, in terms intermediate CO concentration yield during its pyrolysis and oxidation, made by the improved model is in much better agreement with the experiments. Such an accurate kinetic model is critical in predicting the effectiveness of OPCs as flame retardants when used as dopants in hydrocarbon fuels; and in devising counter weapon of mass destruction strategies to destroy chemical weapons.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007691, ucf:52444
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007691
-
-
Title
-
STUDY OF THE EFFECTS OF SODIUM AND ABSORBER MICROSTRUCTURE FOR THE DEVELOPMENT OF CUIN1-XGAXSE2-YSY THIN FILM SOLAR CELL USING AN ALTERNATIVE SELENIUM PRECURSOR.
-
Creator
-
HADAGALI, VINAYKUMAR, DHERE, NEELKANTH, University of Central Florida
-
Abstract / Description
-
Thin film solar cells have the potential to be an important contributor to the world energy demand in the 21st century. CuInGaSe2 thin film solar cells have achieved the highest efficiency among all the thin film technologies. A steady progress has been made in the research and development of CuInSe2 based thin film solar cells. However, there are many issues that need to be addressed for the development of CuInSe2 based thin films solar cells. High price of PV modules has been a biggest...
Show moreThin film solar cells have the potential to be an important contributor to the world energy demand in the 21st century. CuInGaSe2 thin film solar cells have achieved the highest efficiency among all the thin film technologies. A steady progress has been made in the research and development of CuInSe2 based thin film solar cells. However, there are many issues that need to be addressed for the development of CuInSe2 based thin films solar cells. High price of PV modules has been a biggest factor impeding the growth of photovoltaic modules for terrestrial application. This thesis tries to address the effects of sodium on the CIGSe and CIGSeS thin film absorbers. A progressive increase in the grain size and the degree of preferred orientation for (112) was observed with the increase in the amount of sodium available during the absorber growth. The distribution of sulfur was also influenced by the microstructure of the film. The increase in the grain size influenced the diffusion of sulfur in the CIGSeS thin film absorber. Deposition of silicon nitride alkali barrier was successfully completed. A new selenium precursor, dimethyl selenide was successfully used for the preparation of CIGSe and CIGSeS thin film solar cells. Systematic approaches lead to the optimization process parameters for the fabrication of the thin films solar cells. CIGSeS thin film solar cell with a reduced thickness of ~2 micron and an efficiency of 9.95% was prepared on sodalime glass substrate. The research presented here proves the potential of dimethyl selenide as selenium precursor to prepare device quality CIGSe absorber. The process can be further optimized to prepare highly efficient absorbers. Electron backscattered diffraction technique was used for first time to analyze the CIGSeS thin film absorbers. Kikuchi patterns and EBSD maps were obtained on the polished CIGSeS thin film absorbers. Grains with various orientations in the EBSD maps were clearly observed. However, it can also be observed that some pixels have not been indexed by the software. This might be due to the departure of crystalline structure of the film from CuInSe2 or the presence of amorphous phases. Data files for indexing and grain orientation of CIGSeS does not exist. However, with the help of lattice parameters and the position of atoms in the base the data file can be created for CIGSeS material.
Show less
-
Date Issued
-
2009
-
Identifier
-
CFE0002647, ucf:48192
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002647
-
-
Title
-
Harmful Algal Bloom Mitigation using Recycle Concrete Aggregate coated with Fixed-Quat.
-
Creator
-
Ezeodurukwe, Ikenna, Lee, Woo Hyoung, Randall, Andrew, Sadmani, A H M Anwar, University of Central Florida
-
Abstract / Description
-
Human activities generate surplus nutrients which may lead to algal bloom events in water resources along with serious ecological problems and thus substantial economic losses. Particularly, harmful algal blooms (HABs) represent toxic cyanobacterial blooms which produce cyanotoxins. The primary concerns of HABs are the exposures to a wide variety of cyanotoxins via ingestion of contaminated drinking water, inhalation during recreational activities, and consumption of contaminated fish and...
Show moreHuman activities generate surplus nutrients which may lead to algal bloom events in water resources along with serious ecological problems and thus substantial economic losses. Particularly, harmful algal blooms (HABs) represent toxic cyanobacterial blooms which produce cyanotoxins. The primary concerns of HABs are the exposures to a wide variety of cyanotoxins via ingestion of contaminated drinking water, inhalation during recreational activities, and consumption of contaminated fish and shellfish. However, conventional physical and chemical methods are not always possible to efficiently handle these HABs events. It is urgent to develop viable and rapid solutions to control HABs in field and mitigate the effects of HABs in fresh water, particularly in those that serve as sources of drinking water supply.(&)nbsp;Quaternary ammonium compounds (Quats) represent a wide range of cationic compounds with different formulation that constitutes products for agriculture, domestic and medical and industry. As organic antimicrobial compounds, Quats can be used as alternatives to existing chemical-based technique for HABs control due to its less toxicity and its affinity to variety of surface. In this study, recycled concrete aggregate (RCA) from a regional construction and demolition (C(&)D) waste recycling facility was used as a sustainable and environmentally friendly substrate and coated with a composite of silica-quaternary ammonium compounds (Fixed-Quat).(&)nbsp;Then, the algistatic capabilities of imparting antimicrobial properties of Quats to the RCA surface, which involve the covalent attachment of the biocides to the surfaces (sol-gel technique), were evaluated with HABs-causing algal species, Microcystis aeruginosa. Chlorophyll-a was measured to determine the efficiency of HABs mitigation using Fixed-Quat coated RCA in terms of photosynthetic inactivation of the selected algae. OD660 and pH were measured as key parameters to monitor algal cell growth and cement hydration. Notably, a 61% reduction of chlorophyll-a within 6 hours and complete removal of chlorophyll-a within 8 hours were achieved, indicating that Fixed-Quat coated RCA would be efficient in growth inhibition of Microcystis aeruginosa. Overall, with an appropriate design for field application and further evaluations like lifetime of Quat coating and potential recovery of treated algae, the Fixed-Quat antimicrobial coated RCA would be a promising and sustainable(&)nbsp;alternative to conventional HABs mitigation methods in various aquatic systems.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007400, ucf:52066
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007400
-
-
Title
-
UP-CONVERSION IN RARE-EARTH DOPED MICRO-PARTICLES APPLIED TO NEW EMISSIVE 2D DISLAYS.
-
Creator
-
Milliez, Anne, Bass, Michael, University of Central Florida
-
Abstract / Description
-
Up-conversion (UC) in rare-earth co-doped fluorides to convert diode laser light in the near infrared to red, green and blue visible light is applied to make possible high performance emissive displays. The infrared-to-visible UC in the materials we study is a sequential form of non-linear two photon absorption in which a strong absorbing constituent absorbs two low energy photons and transfers this energy to another constituent which emits visible light. Some of the UC emitters' most...
Show moreUp-conversion (UC) in rare-earth co-doped fluorides to convert diode laser light in the near infrared to red, green and blue visible light is applied to make possible high performance emissive displays. The infrared-to-visible UC in the materials we study is a sequential form of non-linear two photon absorption in which a strong absorbing constituent absorbs two low energy photons and transfers this energy to another constituent which emits visible light. Some of the UC emitters' most appealing characteristics for displays are: a wide color gamut with very saturated colors, very high brightness operation without damage to the emitters, long lifetimes and efficiencies comparable to those of existing technologies. Other advantages include simplicity of fabrication, versatility of operating modes, and the potential for greatly reduced display weight and depth. Thanks to recent advances in material science and diode laser technology at the excitation wavelength, UC selected materials can be very efficient visible emitters. However, optimal UC efficiencies strongly depend on chosing proper operating conditions. In this thesis, we studied the conditions required for optimization. We demonstrated that high efficiency UC depends on high pump irradiance, low temperature and low scattering. With this understanding we can predict how to optimally use UC emitters in a wide range of applications. In particular, we showed how our very efficient UC emitters can be applied to make full color displays and very efficient white light sources.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001058, ucf:46828
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001058
-
-
Title
-
A Solid Phase Assay for Topoisomerase I interfacial Poisons and Catalytic Inhibitors.
-
Creator
-
Cyril Sagayaraj, Vidusha, Muller, Mark, Zhao, Jihe, Chakrabarti, Debopam, University of Central Florida
-
Abstract / Description
-
We report a mechanism based screening technique to rapidly identify eukaryotic topoisomerase I targeting agents. The method is based on genetic tagging of topoisomerase I to immobilize the enzyme on a solid surface in a microtiter well format. DNA is added to the wells and retained DNA is detected by Picogreen fluorescence. Compounds that result in an increase in Picogreen staining represent potential topoisomerase interfacial poisons while those that reduce fluorescence report catalytic...
Show moreWe report a mechanism based screening technique to rapidly identify eukaryotic topoisomerase I targeting agents. The method is based on genetic tagging of topoisomerase I to immobilize the enzyme on a solid surface in a microtiter well format. DNA is added to the wells and retained DNA is detected by Picogreen fluorescence. Compounds that result in an increase in Picogreen staining represent potential topoisomerase interfacial poisons while those that reduce fluorescence report catalytic inhibitors; therefore, the solid phase assay represents a 'bimodal' readout that reveals mechanisms of action. The method has been demonstrated to work with known interfacial poisons and catalytic inhibitors. In addition to specific topoisomerase targeting drugs, the method also weakly detects other relevant anticancer agents, such as potent DNA alkylating and intercalating compounds; therefore, topoisomerase I HTS represents an excellent tool for searching and identifying novel genotoxic agents. This method is rapid, robust, economical and scalable for large library screens.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0004473, ucf:49304
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004473
-
-
Title
-
A 2009 MOBILE SOURCE EMISSIONS INVENTORY OF THE UNIVERSITY OF CENTRAL FLORIDA.
-
Creator
-
Clifford, Johanna, Cooper, David, University of Central Florida
-
Abstract / Description
-
This thesis reports on the results of a mobile source emissions inventory for the University of Central Florida (UCF). For a large urban university, the majority of volatile organic compounds (VOC), oxides of nitrogen (NOx), and carbon dioxide (CO2) emissions come from on-road sources: personal vehicles and campus shuttles carrying students, faculty, staff, and administrators to and from the university, as well as university business trips. In addition to emissions from daily commutes, non...
Show moreThis thesis reports on the results of a mobile source emissions inventory for the University of Central Florida (UCF). For a large urban university, the majority of volatile organic compounds (VOC), oxides of nitrogen (NOx), and carbon dioxide (CO2) emissions come from on-road sources: personal vehicles and campus shuttles carrying students, faculty, staff, and administrators to and from the university, as well as university business trips. In addition to emissions from daily commutes, non-road equipment such as lawnmowers, leaf blowers, small maintenance vehicles, and other such equipment utilized on campus contributes to a significant portion to the total emissions from the university. UCF has recently become the second largest university in the nation (with over 56,000 students enrolled in the fall 2010 semester), and contributes significantly to VOC, NOx, and CO2 emissions in Central Florida area. In this project, students, faculty, staff, and administrators were first surveyed to determine their commuting distances and frequencies. Information was also gathered on vehicle type, and age distribution of the personal vehicles of students, faculty, administration, and staff as well as their bus, car-pool, and alternate transportation usage. The EPA approved mobile source emissions model, Motor Vehicle Emissions Simulator (MOVES2010a), was used to calculate the emissions from on-road vehicles, and UCF fleet gasoline consumption records were used to calculate the emissions from non-road equipment and on campus UCF fleet vehicles. The results of the UCF mobile source emissions inventory are reported and compared to a recently completed emissions inventory for the entire three-county area in Central Florida.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0003923, ucf:48704
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003923
-
-
Title
-
THE STUDY OF THREE DIFFERENT LAYERED STRUCTURES AS MODEL SYSTEMS FOR HYDROGEN STORAGE MATERIALS.
-
Creator
-
Oztek, Muzaffer, Hampton, Michael, University of Central Florida
-
Abstract / Description
-
The strength and success of the hydrogen economy relies heavily on the storage of hydrogen. Storage systems in which hydrogen is sequestered in a solid material have been shown to be advantageous over storage of hydrogen as a liquid or compressed gas. Many different types of materials have been investigated, yet the desired capacity and uptake/release characteristics required for implementation have not been reached. In this work, porphyrin aggregates were investigated as a new type of...
Show moreThe strength and success of the hydrogen economy relies heavily on the storage of hydrogen. Storage systems in which hydrogen is sequestered in a solid material have been shown to be advantageous over storage of hydrogen as a liquid or compressed gas. Many different types of materials have been investigated, yet the desired capacity and uptake/release characteristics required for implementation have not been reached. In this work, porphyrin aggregates were investigated as a new type of material for hydrogen storage. The building blocks of the aggregates are porphyrin molecules that are planar and can assume a face to face arrangement that is also known as H-aggregation. The H-aggregates were formed in solution, upon mixing of aqueous solutions of two different porphyrins, one carrying positively charged and the other one carrying negatively charged functional groups. The cationic porphyrin used was meso-tetra(4-N,N,N-trimethylanilinium) porphine (TAP) and it was combined with four different anionic porphyrins, meso-tetra(4-sulfonatophenyl)porphine (TPPS), meso-tetra(4-carboxyphenyl) porphine (TCPP), Cu(II) meso-tetra(4-carboxyphenyl) porphine, and Fe(III) meso-tetra(4-carboxyphenyl) porphine. The force of attraction that held two oppositely charged porphyrin molecules together was electrostatic attraction between the peripheral groups. Solid state aggregates were successfully isolated either by solvent evaporation or by centrifuging and freeze drying. TCPP-TAP and Cu(II)TCPP-TAP aggregates were shown to interact with hydrogen starting from 150 °C up to 250 °C. The uptake capacity was about 1 weight %. Although this value is very low, this is the first observation of porphyrin aggregates absorbing hydrogen. This opened the way for further research to improve hydrogen absorption properties of these materials, as well as other materials based on this model. Two other materials that are also based on planar building blocks were selected to serve as a comparison to the porphyrin aggregates. The first of those materials was metal intercalated graphite compounds. In such compounds, a metal atom is placed between the layers of graphene that make up the graphite. Lithium, calcium and lanthanum were selected in this study. Theoretical hydrogen capacity was calculated for each material based on the hydriding of the metal atoms only. The fraction of that theoretical hydrogen capacity actually displayed by each material increased from La to Ca to Li containing graphite. The weight % hydrogen observed for these materials varied between 0.60 and 2.0 %. The other material tested for comparison was KxMnO2, a layered structure of MnO2 that contained the K atoms in between oxygen layers. The hydrogen capacity of the KxMnO2 samples was similar to the other materials tested in the study, slightly above 1 weight %. This work has shown that porphyrin aggregates, carbon based and manganese dioxide based materials are excellent model materials for hydrogen storage. All three materials absorb hydrogen. Porphyrin aggregates have the potential to exhibit adjustable hydrogen uptake and release temperatures owing to their structure that could interact with an external electric or magnetic field. In the layered materials, it is possible to alter interlayer spacing and the particular intercalates to potentially produce a material with an exceptionally large hydrogen capacity. As a result, these materials can have significant impact on the use of hydrogen as an energy carrier.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0003752, ucf:48769
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003752
-
-
Title
-
Trace Contaminant Control: An In-Depth Study of a Silica-Titania Composite for Photocatalytic Remediation of Closed-Environment Habitat Air.
-
Creator
-
Coutts, Janelle, Yestrebsky, Cherie, Clausen, Christian, Sigman, Michael, Elsheimer, Seth, Wheeler, Raymond, University of Central Florida
-
Abstract / Description
-
This collection of studies focuses on a photocatalytic oxidation (PCO) system for the oxidation of a model compound, ethanol (EtOH), using an adsorption-enhanced silica-titania composite (STC) as the photocatalyst. Studies are aimed at addressing the optimization of various parameters including light source, humidity, temperature, and possible poisoning events for use as part of a system for gaseous trace contaminant control in closed-environment habitats.The first goal was to distinguish the...
Show moreThis collection of studies focuses on a photocatalytic oxidation (PCO) system for the oxidation of a model compound, ethanol (EtOH), using an adsorption-enhanced silica-titania composite (STC) as the photocatalyst. Studies are aimed at addressing the optimization of various parameters including light source, humidity, temperature, and possible poisoning events for use as part of a system for gaseous trace contaminant control in closed-environment habitats.The first goal was to distinguish the effect of photon flux (i.e., photons per unit time reaching a surface) from that of photon energy (i.e., wavelength) of a photon source on the PCO of ethanol. Experiments were conducted in a bench-scale annular reactor packed with STC pellets and irradiated with either a UV-A fluorescent black light blue lamp (?peak = 365 nm) at its maximum light intensity or a UV-C germicidal lamp (?peak = 254 nm) at three levels of light intensity. The STC-catalyzed oxidation of ethanol was found to follow zero-order kinetics with respect to CO2 production, regardless of the photon source. Increased photon flux led to increased EtOH removal, mineralization, and oxidation rate accompanied by lower intermediate concentration in the effluent. The oxidation rate was higher in the reactor irradiated by UV-C than by UV-A (38.4 vs. 31.9 nM s-1) at the same photon flux, with similar trends for mineralization (53.9 vs. 43.4%) and photonic efficiency (63.3 vs. 50.1 nmol CO2 (&)#181;mol photons-1). UV-C irradiation also led to decreased intermediate concentration in the effluent compared to UV-A irradiation. These results demonstrated that STC-catalyzed oxidation is enhanced by both increased photon flux and photon energy.The effect of temperature and relative humidity on the STC-catalyzed degradation of ethanol was also determined using the UV-A light source at its maximum intensity. Increasing temperature from 25(&)deg;C to 65(&)deg;C caused a significant decrease in ethanol adsorption (47.1% loss in adsorption capacity); minimal changes in EtOH removal; and a dramatic increase in mineralization (37.3 vs. 74.8%), PCO rate (25.8 vs. 53.2 nM s-1), and photonic efficiency (42.7 vs. 82.5 nmol CO2 (&)#181;mol photons-1); as well as a decrease in intermediate acetaldehyde (ACD) evolution in the effluent. By elevating the reactor temperature to 45(&)deg;C, an ~32% increase in photonic efficiency was obtained over the use of UV-C irradiation at room temperature. Increasing the reactor temperature also allowed for increased energy usage efficiency by utilizing both the light and heat energy of the UV-A light source. Higher relative humidity (RH) also caused a significant decrease (16.8 vs. 6.0 mg EtOH g STC-1) in ethanol adsorption and dark adsorption 95% breakthrough times (48.5 vs.16.8 hours). Trends developed for ethanol adsorption correlated well with studies using methanol as the target VOC on a molar basis. At higher RH, ethanol removal and ACD evolution were increased while mineralization, PCO rate, and photonic efficiency were decreased. These studies allowed for the development of empirical formulas to approximate EtOH removal, PCO rate, mineralization, and ACD evolution based on the parameters (light intensity, temperature, and RH) assessed.Poisoning events included long-term exposure to low-VOC laboratory air and episodic spikes of either Freon 218 or hexamethylcyclotrisiloxane. To date, all poisoning studies have shown minimal (0-6%) decreases in PCO rates, mineralization, and minimal increases in ACD evolution, with little change in EtOH removal. These results show great promise for this technology as part of a trace contaminant control system for niche applications such as air processing onboard the ISS or other new spacecrafts.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0005092, ucf:50741
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005092
-
-
Title
-
The Anti-toxin Properties of Grape Seed Phenolic Compounds.
-
Creator
-
Cherubin, Patrick, Teter, Kenneth, Zervos, Antonis, Roy, Herve, Phanstiel, Otto, University of Central Florida
-
Abstract / Description
-
Corynebacterium diphtheriae, Pseudomonas aeruginosa, Ricinus communis, Shigella dysentariae, and Vibrio cholerae produce AB toxins which share the same basic structural characteristics: a catalytic A subunit attached to a cell-binding B subunit. All AB toxins have cytosolic targets despite an initial extracellular location. AB toxins use different methods to reach the cytosol and have different effects on the target cell. Broad-spectrum inhibitors against these toxins are therefore hard to...
Show moreCorynebacterium diphtheriae, Pseudomonas aeruginosa, Ricinus communis, Shigella dysentariae, and Vibrio cholerae produce AB toxins which share the same basic structural characteristics: a catalytic A subunit attached to a cell-binding B subunit. All AB toxins have cytosolic targets despite an initial extracellular location. AB toxins use different methods to reach the cytosol and have different effects on the target cell. Broad-spectrum inhibitors against these toxins are therefore hard to develop because they use different surface receptors, entry mechanisms, enzyme activities, and cytosolic targets.We have found that grape seed extract provides resistance to five different AB toxins: diphtheria toxin (DT), P. aeruginosa exotoxin A (ETA), ricin, Shiga toxin, and cholera toxin (CT). To identify individual compounds in grape seed extract that are capable of inhibiting the activities of these AB toxins, we screened twenty common phenolic compounds of grape seed extract for anti-toxin properties. Three compounds inhibited DT, four inhibited ETA, one inhibited ricin, and twelve inhibited CT. Additional studies were performed to determine the mechanism of inhibition against CT. Two compounds inhibited CT binding to the cell surface and even stripped bound CT off the plasma membrane of a target cell. Two other compounds inhibited the enzymatic activity of CT. We have thus identified individual toxin inhibitors from grape seed extract and some of their mechanisms of inhibition against CT. This work will help to formulate a defined mixture of phenolic compounds that could potentially be used as a therapeutic against a broad range of AB toxins.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005315, ucf:50510
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005315
-
-
Title
-
NEW DEVELOPMENTS ON HIGH-RESOLUTION LUMINESCENCE SPECTROSCOPY AND THEIR APPLICATION TO THE DIRECT ANALYSIS OF ORGANIC POLLUTANTS IN ENVIRONMENTAL SAMPLES.
-
Creator
-
yu, shenjiang, Campiglia, Andres, University of Central Florida
-
Abstract / Description
-
Polycyclic aromatic compounds (PACs), which comprise a complex class of condensed multi-ring benzenoid compounds, are important environmental pollutants originating from a wide variety of natural and anthropogenic sources. PACs are generally formed during incomplete combustion of pyrolisis of organic matter containing carbon and hydrogen. Because combustion of organic materials is involved in countless natural processes or human activities, PACs are omnipresent and abundant pollutants in air,...
Show morePolycyclic aromatic compounds (PACs), which comprise a complex class of condensed multi-ring benzenoid compounds, are important environmental pollutants originating from a wide variety of natural and anthropogenic sources. PACs are generally formed during incomplete combustion of pyrolisis of organic matter containing carbon and hydrogen. Because combustion of organic materials is involved in countless natural processes or human activities, PACs are omnipresent and abundant pollutants in air, soil, and water. Chemical analysis of PACs is of great environmental and toxicological importance. Many of them are highly suspect as etiological agents in human cancer. Because PACs carcinogenic properties strongly depend on molecular structure and differ significantly from isomer to isomer, it is of paramount importance to determine the most toxic isomers even if they are present at much lower concentrations than their less toxic isomers. Gas chromatography (GC), high-resolution GC, and high-performance liquid chromatography (HPLC) are the basis for standard PACs identification and determination. Many cases exist where GC, HPLC, and even HR-GC have not been capable to provide unambiguous isomer identification. The lack of reliable analytical data has lead to serious errors in environmental and toxicological studies. This dissertation deals with the development of novel instrumentation and analytical methods for the analysis of PACs in environmental samples. The developed methodology is based on two well-known high-resolution luminescence techniques, namely Shpol'skii Spectroscopy (SS) and Fluorescence Line Narrowing Spectroscopy (FLNS). Although these two techniques have long been recognized for their capability in providing direct determination of target PACs in complex environmental samples, several reasons have hampered their widespread use for the problem at hand. These include inconvenient sample freezing procedures; questions about signal reproducibility; lengthy spectral acquisition, which might cause severe sample degradation due to prolonged excitation; broadband fluorescence background that degrades quality of spectra, precision of measurements and detection limits; solvent constrains imposed by the need of optically transparent media; and, most importantly, the lack of selectivity and sensitivity for unambiguous determination of closely related PACs metabolites. This dissertation presents significant advances on all fronts. The analytical methodology is then extended to the analysis of fluoroquinolones (FQs) in aqueous samples. FQs are one of the most powerful classes of antibiotics currently used for the treatment of urinary tract infections. Their widespread use in both human and animal medicine has prompted their appearance in aquatic systems. The search for a universal method capable to face this new environmental challenge has been centered on HPLC. Depending on the FQ and its concentration level, successful determination has been accomplished with mass spectrometry, room-temperature fluorescence (RTF) or UV absorption spectrometry. Unfortunately, no single detection mode has shown the ability to detect all FQ at the concentration ratios found in environmental waters. We provide a feasible alternative based on FLNS. On the instrumentation side, we present a single instrument with the capability to collect multidimensional data formats in both the fluorescence and the phosphorescence time domains. We demonstrate the ability to perform luminescence measurements in highly scattering media by comparing the precision of measurements in optically transparent solvents (Shpol'skii solvents) to those obtained in "snow-like" matrixes and solid samples. For decades, conventional low-temperature methodology has been restricted to optically transparent media. This restriction has limited its application to organic solvents that freeze into a glass. In this dissertation, we remove this limitation with the use of cryogenic fiber-optic probes. Our final efforts deal with low-temperature absorption measurements. Recording absorption spectra via transmittance through frozen matrixes is a challenging task. The main reason is the difficulty to overcome the strong scattering light reaching the detector. This is particularly true when thick samples are necessary for recording absorption spectra of weak oscillators. In the case of strongly fluorescent compounds, additional errors in absorbance measurements arise from the emission reaching the detector, which might have comparable intensity to that of the transmitted light. We present a fundamentally different approach to low-temperature absorption measurements as the sought-for-information is the intensity of laser excitation returning from the frozen sample to the intensified-charge coupled device (ICCD). Laser excitation is collected with the aid of a cryogenic fiber optic probe. The feasibility of our approach is demonstrated with single-site and multiple-site Shpol'skii systems. 4.2K absorption spectra show excellent agreement to their literature counterparts recorded via transmittance with closed cycle cryogenators. Fluorescence quantum yields measured at room-temperature compare well to experimental data acquired in our lab via classical methodology. Similar agreement is observed between 77K fluorescence quantum yields and previously reported data acquired with classical methodology. We then extend our approach to generate original data on fluorescence quantum yields at 4.2K.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001456, ucf:47039
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001456
-
-
Title
-
Metastable-State Photoacids: Synthesis, Properties, and Applications.
-
Creator
-
Patel, Parth, Chumbimuni Torres, Karin, Hernandez, Florencio, Santra, Swadeshmukul, Beazley, Melanie, Lee, Woo Hyoung, University of Central Florida
-
Abstract / Description
-
Reversible photochromic compounds have the ability to reversibly change its color when it absorbs photons of a particular wavelength. This process of color change is a consequence of structural changes within the compound, such as cis-trans photo-isomerization. Some examples of photochromic compounds are spiropyrans, spirooxazines, diarylethenes and azobenzenes. These compounds have been extensively studied for decades, and are used in various applications such as biomedicine, chemical...
Show moreReversible photochromic compounds have the ability to reversibly change its color when it absorbs photons of a particular wavelength. This process of color change is a consequence of structural changes within the compound, such as cis-trans photo-isomerization. Some examples of photochromic compounds are spiropyrans, spirooxazines, diarylethenes and azobenzenes. These compounds have been extensively studied for decades, and are used in various applications such as biomedicine, chemical sensors and harvesting solar energy. However, majority of photochromic compounds are initially activated by ultraviolet (UV) light. The use of UV light is harmful for biological applications and photo-degrade the compound over repeated use. To overcome these limitations, a new class of reversible photochromic compound was introduced, called metastable-state photoacid (mPAH). In brief, mPAH is a photochromic compound which can photo-dissociate its protons under visible light and can thermally re-capture the released protons efficiently in the dark. Based on this unique property, in this research, we (1) synthesized different mPAH, and (2) studied and characterized their physicochemical (acidity, kinetics, and optical) properties. Additionally, we (3) applied different visible light activated mPAHs towards light controllable polymeric-based ion-selective optodes for detection of calcium ions and sodium ions, and modulate fluorescence with pH. The research presented herein opens new avenues towards the synthesis of mPAH derivatives and could be applied to any proton-transfer process related applications which requires wireless controllability with high sensitivity.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007849, ucf:52769
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007849
-
-
Title
-
Novel Fuel-producing Fungi and Methodologies for Increasing Fuel Production.
-
Creator
-
Wang, Yuemin, Harper, James, Bridge, Candice, Frazer, Andrew, Beazley, Melanie, Blair, Richard, University of Central Florida
-
Abstract / Description
-
An endophytic fungus Hypoxylon sp. (BS15) has recently been isolated and found to produce volatile organic compounds (VOCs) that have potential relevance as hydrocarbon fuels. In the work described here, the traditional refined carbohydrate (e.g., sucrose) diet source was replaced by simple sugars produced using a solvent free green chemistry mechanocatalytic method involving ball milling in the solid. BS15 is able to grow on this degraded cellulose as well as the more traditional potato...
Show moreAn endophytic fungus Hypoxylon sp. (BS15) has recently been isolated and found to produce volatile organic compounds (VOCs) that have potential relevance as hydrocarbon fuels. In the work described here, the traditional refined carbohydrate (e.g., sucrose) diet source was replaced by simple sugars produced using a solvent free green chemistry mechanocatalytic method involving ball milling in the solid. BS15 is able to grow on this degraded cellulose as well as the more traditional potato dextrose broth. The volatile compounds produced from both media were largely the same. Unfortunately, it is observed that long term in vitro growth of BS15 results in diminished VOC production. The VOC production was partially restored by cultivating BS15 in growth media containing finely ground woody tissue from the original host plant (Taxodium distichum). Extracts from this woody tissue were made by sequentially extracting with dichloromethane, methanol, and water with a goal of isolating VOC production modulators. Both the dichloromethane and water extracts place on bio-mimicking filter paper were found to modulate VOC production, while the methanol extract had no significant impact. Surprisingly, the woody tissue remaining after exhaustive extraction also acted as a VOC production modulator when combined with the growth media, with noticeable changes in the production of four compounds. This woody tissue also induced production of two compounds not observed in the original BS15 extract, and their changes are inheritable. Remarkably filter paper had the same modulating effect as exhaustively extracted woody tissue, suggesting the modulation was partially due to cellulose degradation products. Extraction of the maximum amounts of VOCs is desirable and here a comparison of solid phase extraction (SPE) and solid phase micro-extraction (SPME) techniques is made. This comparison involves two endophytes, BS15C and Streptomyces ambofaciens (SA 40053). The SPE technique is more effective in retaining compounds having lower vapor pressures and higher boiling points with nearly three to five times more VOC mass obtained versus SPME.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007552, ucf:52598
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007552
-
-
Title
-
PRICE DISCOVERY IN THE U.S. BOND MARKETS: TRADING STRATEGIES AND THE COST OF LIQUIDITY.
-
Creator
-
Shao, Haimei, Yong, Jiongmin, University of Central Florida
-
Abstract / Description
-
The world bond market is nearly twice as large as the equity market. The goal of this dissertation is to study the dynamics of bond price. Among the liquidity risk, interest rate risk and default risk, this dissertation will focus on the liquidity risk and trading strategy. Under the mathematical frame of stochastic control, we model price setting in U.S. bond markets where dealers have multiple instruments to smooth inventory imbalances. The difficulty in obtaining the optimal trading...
Show moreThe world bond market is nearly twice as large as the equity market. The goal of this dissertation is to study the dynamics of bond price. Among the liquidity risk, interest rate risk and default risk, this dissertation will focus on the liquidity risk and trading strategy. Under the mathematical frame of stochastic control, we model price setting in U.S. bond markets where dealers have multiple instruments to smooth inventory imbalances. The difficulty in obtaining the optimal trading strategy is that the optimal strategy and value function depend on each other, and the corresponding HJB equation is nonlinear. To solve this problem, we derived an approximate optimal explicit trading strategy. The result shows that this trading strategy is better than the benchmark central symmetric trading strategy.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0003633, ucf:48858
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003633
-
-
Title
-
CHARACTERIZATION OF NOVEL ANTIMALARIALS FROM COMPOUNDS INSPIRED BY NATURAL PRODUCTS USING PRINCIPAL COMPONENT ANALYSIS (PCA).
-
Creator
-
Balde, Zarina Marie G, Chakrabarti, Debopam, University of Central Florida
-
Abstract / Description
-
Malaria is caused by a protozoan parasite, Plasmodium falciparum, which is responsible for over 500,000 deaths per year worldwide. Although malaria medicines are working well in many parts of the world, antimalarial drug resistance has emerged as one of the greatest challenges facing malaria control today. Since the malaria parasites are once again developing widespread resistance to antimalarial drugs, this can cause the spread of malaria to new areas and the re-emergence of malaria in areas...
Show moreMalaria is caused by a protozoan parasite, Plasmodium falciparum, which is responsible for over 500,000 deaths per year worldwide. Although malaria medicines are working well in many parts of the world, antimalarial drug resistance has emerged as one of the greatest challenges facing malaria control today. Since the malaria parasites are once again developing widespread resistance to antimalarial drugs, this can cause the spread of malaria to new areas and the re-emergence of malaria in areas where it had already been eradicated. Therefore, the discovery and characterization of novel antimalarials is extremely urgent. A previous drug screen in Dr. Chakrabarti's lab identified several natural products (NPs) with antiplasmodial activities. The focus of this study is to characterize the hit compounds using Principal Component Analysis (PCA) to determine structural uniqueness compared to known antimalarial drugs. This study will compare multiple libraries of different compounds, such as known drugs, kinase inhibitors, macrocycles, and top antimalarial hits discovered in our lab. Prioritizing the hit compounds by their chemical uniqueness will lessen the probability of future drug resistance. This is an important step in drug discovery as this will allow us to increase the interpretability of the datasets by creating new uncorrelated variables that will successively maximize variance. Characterization of the Natural Product inspired compounds will enable us to discover potent, selective, and novel antiplasmodial scaffolds that are unique in the 3-dimensional chemical space and will provide critical information that will serve as advanced starting points for the antimalarial drug discovery pipeline.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFH2000405, ucf:45893
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFH2000405
-
-
Title
-
The mauC gene encodes a versatile signal sequence and redox protein that can be utilized in native and non-native protein expression and electron trnasfer systems.
-
Creator
-
Dow, Brian, Davidson, Victor, Self, William, Rohde, Kyle, Tatulian, Suren, University of Central Florida
-
Abstract / Description
-
The redox-active type 1 copper site of amicyanin is composed of a single copper ion that is coordinated by two histidines, a methionine, and a cysteine residue. This redox site has a potential of +265 mV at pH7.5. Over ten angstroms away from the copper site resides a tryptophan residue whose fluorescence is quenched by the copper. The effects of the tryptophan on the electron transfer (ET) properties were investigated by site-directed mutagenesis. Lessons learned about the hydrogen bonding...
Show moreThe redox-active type 1 copper site of amicyanin is composed of a single copper ion that is coordinated by two histidines, a methionine, and a cysteine residue. This redox site has a potential of +265 mV at pH7.5. Over ten angstroms away from the copper site resides a tryptophan residue whose fluorescence is quenched by the copper. The effects of the tryptophan on the electron transfer (ET) properties were investigated by site-directed mutagenesis. Lessons learned about the hydrogen bonding network of amicyanin from the aforementioned study were attempted to be used as a model to increase the stability of another beta barrel protein, the immunoglobulin light chain variable domain (VL). In addition, amicyanin was used as an alternative redox partner with MauG. MauG is a diheme protein from the mau gene cluster that catalyzes the biogenesis of the tryptophan tryptophylquinone cofactor of methylamine dehydrogenase (MADH). The amicyanin-MauG complex was used to study the free energy dependence and impact of reorganization energy in biological electron transfer reactions.The sole tryptophan of amicyanin was converted to a tyrosine via site-directed mutagenesis. This mutation had no effect on the electron transfer parameters with its redox partners, methylamine dehydrogenase and cytochrome c-551i. However, the pKa of the pH-dependence of the redox potential of the copper site was shifted +0.5 pH units. This was a result of an additional hydrogen bond between Met51 and the copper coordinating residue His95 in the reduced form of amicyanin. This additional hydrogen bond stabilizes the reduced form. Also, the stability of the copper site and the protein overall was significantly decreased, as seen by the temperature dependence of the visible spectrum of the copper site and the circular dichroism spectrum of the protein. This destabilization is attributed to the loss of an interior, cross-barrel hydrogen bond.The VL is structurally similar to amicyanin, but it does not contain any cross-barrel hydrogen bonds. The importance of the cross-barrel hydrogen bond in stabilizing amicyanin is evident. A homologous bond in VL was attempted to be engineered by using site-directed mutagenesis to insert neutral residues with protonatable groups into the core of the protein. Wild-type (WT) VL was purified from the periplasm and found to be properly folded as determined by circular dichroism and size exclusion chromatography. Mutants were expressed in E. coli using the amicyanin signal sequence for periplasmic expression. Folded mutant protein could not be purified from the periplasm.When amicyanin is used in complex with MauG, it retains the pH-dependence of the redox potential of its copper site due to the looseness of the interprotein interface. The free energy of the reaction was manipulated by variation in pH from pH 5.8 to 8.0. The ET parameters are reorganization energy of 2.34 eV and an electronic coupling constant of 0.6 cm-1. P94A amicyanin has a potential that is 120 mV higher than WT amicyanin and was used to extend the range of the free energy dependence studied. The ET parameters of the reaction of WT and P94A amicyanin with MauG were within error of each other. This is significant because the ET reaction of P94A amicyanin with its natural electron acceptor was not able to be studied due to a kinetic coupling of the ET step with a non-ET step. This kinetic coupling obscured the parameters of the ET step because it is not kinetically distinguishable from the ET step.A Y294H MauG mutant was also studied. This mutation replaced the axial tyrosine ligand of the six-coordinate heme of MauG with a histidine. No reaction is observed with Y294H MauG in its native reaction. However, the high valent oxidation state of the five-coordinate heme of Y294H MauG reacts with reduced amicyanin. The ET rate was analyzed by ET theory to study the high valent heme in Y294H MauG. The reorganization energy of Y294H MauG was calculated to be nearly 20% lower as compared to the same reaction with WT MauG. These results provide insight into the obscured nature of reorganization energy of large redox cofactors in proteins, particularly heme cofactors, as well as to how the active sites of enzymes are optimized to perform long range ET vs catalysis with regard to balancing redox potential and reorganization energy.
Show less
-
Date Issued
-
2016
-
Identifier
-
CFE0006100, ucf:51192
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006100