Current Search: cooperative systems (x)
View All Items
- Title
- ROBUST DIALOG MANAGEMENT THROUGH A CONTEXT-CENTRIC ARCHITECTURE.
- Creator
-
Hung, Victor, Gonzalez, Avelino, University of Central Florida
- Abstract / Description
-
This dissertation presents and evaluates a method of managing spoken dialog interactions with a robust attention to fulfilling the human user's goals in the presence of speech recognition limitations. Assistive speech-based embodied conversation agents are computer-based entities that interact with humans to help accomplish a certain task or communicate information via spoken input and output. A challenging aspect of this task involves open dialog, where the user is free to converse in an...
Show moreThis dissertation presents and evaluates a method of managing spoken dialog interactions with a robust attention to fulfilling the human user's goals in the presence of speech recognition limitations. Assistive speech-based embodied conversation agents are computer-based entities that interact with humans to help accomplish a certain task or communicate information via spoken input and output. A challenging aspect of this task involves open dialog, where the user is free to converse in an unstructured manner. With this style of input, the machine's ability to communicate may be hindered by poor reception of utterances, caused by a user's inadequate command of a language and/or faults in the speech recognition facilities. Since a speech-based input is emphasized, this endeavor involves the fundamental issues associated with natural language processing, automatic speech recognition and dialog system design. Driven by Context-Based Reasoning, the presented dialog manager features a discourse model that implements mixed-initiative conversation with a focus on the user's assistive needs. The discourse behavior must maintain a sense of generality, where the assistive nature of the system remains constant regardless of its knowledge corpus. The dialog manager was encapsulated into a speech-based embodied conversation agent platform for prototyping and testing purposes. A battery of user trials was performed on this agent to evaluate its performance as a robust, domain-independent, speech-based interaction entity capable of satisfying the needs of its users.
Show less - Date Issued
- 2010
- Identifier
- CFE0003230, ucf:48556
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003230
- Title
- CONTROL OF NONHOLONOMIC SYSTEMS.
- Creator
-
Yuan, Hongliang, Qu, Zhihua, University of Central Florida
- Abstract / Description
-
Many real-world electrical and mechanical systems have velocity-dependent constraints in their dynamic models. For example, car-like robots, unmanned aerial vehicles, autonomous underwater vehicles and hopping robots, etc. Most of these systems can be transformed into a chained form, which is considered as a canonical form of these nonholonomic systems. Hence, study of chained systems ensure their wide applicability. This thesis studied the problem of continuous feed-back control of the...
Show moreMany real-world electrical and mechanical systems have velocity-dependent constraints in their dynamic models. For example, car-like robots, unmanned aerial vehicles, autonomous underwater vehicles and hopping robots, etc. Most of these systems can be transformed into a chained form, which is considered as a canonical form of these nonholonomic systems. Hence, study of chained systems ensure their wide applicability. This thesis studied the problem of continuous feed-back control of the chained systems while pursuing inverse optimality and exponential convergence rates, as well as the feed-back stabilization problem under input saturation constraints. These studies are based on global singularity-free state transformations and controls are synthesized from resulting linear systems. Then, the application of optimal motion planning and dynamic tracking control of nonholonomic autonomous underwater vehicles is considered. The obtained trajectories satisfy the boundary conditions and the vehicles' kinematic model, hence it is smooth and feasible. A collision avoidance criteria is set up to handle the dynamic environments. The resulting controls are in closed forms and suitable for real-time implementations. Further, dynamic tracking controls are developed through the Lyapunov second method and back-stepping technique based on a NPS AUV II model. In what follows, the application of cooperative surveillance and formation control of a group of nonholonomic robots is investigated. A designing scheme is proposed to achieves a rigid formation along a circular trajectory or any arbitrary trajectories. The controllers are decentralized and are able to avoid internal and external collisions. Computer simulations are provided to verify the effectiveness of these designs.
Show less - Date Issued
- 2009
- Identifier
- CFE0002683, ucf:48220
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002683
- Title
- Reliability and Robustness Enhancement of Cooperative Vehicular Systems: A Bayesian Machine Learning Perspective.
- Creator
-
Nourkhiz Mahjoub, Hossein, Pourmohammadi Fallah, Yaser, Vosoughi, Azadeh, Yuksel, Murat, Atia, George, Eluru, Naveen, University of Central Florida
- Abstract / Description
-
Autonomous vehicles are expected to greatly transform the transportation domain in the near future. Some even envision that the human drivers may be fully replaced by automated systems. It is plausible to assume that at least a significant part of the driving task will be done by automated systems in not a distant future. Although we are observing a rapid advance towards this goal, which gradually pushes the traditional human-based driving toward more advanced autonomy levels, the full...
Show moreAutonomous vehicles are expected to greatly transform the transportation domain in the near future. Some even envision that the human drivers may be fully replaced by automated systems. It is plausible to assume that at least a significant part of the driving task will be done by automated systems in not a distant future. Although we are observing a rapid advance towards this goal, which gradually pushes the traditional human-based driving toward more advanced autonomy levels, the full autonomy concept still has a long way before being completely fulfilled and realized due to numerous technical and societal challenges. During this long transition phase, blended driving scenarios, composed of agents with different levels of autonomy, seems to be inevitable. Therefore, it is critical to design appropriate driving systems with different levels of intelligence in order to benefit all participants. Vehicular safety systems and their more advanced successors, i.e., Cooperative Vehicular Systems (CVS), have originated from this perspective. These systems aim to enhance the overall quality and performance of the current driving situation by incorporating the most advanced available technologies, ranging from on-board sensors such as radars, LiDARs, and cameras to other promising solutions e.g. Vehicle-to-Everything (V2X) communications. However, it is still challenging to attain the ideal anticipated benefits out of the cooperative vehicular systems, due to the inherent issues and challenges of their different components, such as sensors' failures in severe weather conditions or the poor performance of V2X technologies under dense communication channel loads. In this research we aim to address some of these challenges from a Bayesian Machine- Learning perspective, by proposing several novel ideas and solutions which facilitate the realization of more robust, reliable, and agile cooperative vehicular systems. More precisely, we have a two-fold contribution here. In one aspect, we have investigated the notion of Model-Based Communications (MBC) and demonstrated its effectiveness for V2X communication performance enhancement. This improvement is achieved due to the more intelligent communication strategy of MBC in comparison with the current state-of-the-art V2X technologies. Essentially, MBC proposes a conceptual change in the nature of the disseminated and shared information over the communication channel compared to what is being disseminated in current technologies. In the MBC framework, instead of sharing the raw dynamic information among the network agents, each agent shares the parameters of a stochastic forecasting model which represents its current and future behavior and updates these parameters as needed. This model sharing strategy enables the receivers to precisely predict the future behaviors of the transmitter even when the update frequency is very low. On the other hand, we have also proposed receiver-side solutions in order to enhance the CVS performance and reliability and mitigate the issues caused by imperfect communication and detection processes. The core concept for these solutions is incorporating other informative elements in the system to compensate for the lack of information which is lost during the imperfect communication or detection phases. For proof of concept, we have designed an adaptive FCW framework which considers the driver's feedbacks to the CVS system. This adaptive framework mitigates the negative impact of imperfectly received or detected information on system performance, using the inherent information of these feedbacks and responses. The effectiveness and superiority of this adaptive framework over traditional design has been demonstrated in this research.
Show less - Date Issued
- 2019
- Identifier
- CFE0007845, ucf:52807
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007845
- Title
- EPISODIC MEMORY MODEL FOR EMBODIED CONVERSATIONAL AGENTS.
- Creator
-
Elvir, Miguel, Gonzalez, Avelino, University of Central Florida
- Abstract / Description
-
Embodied Conversational Agents (ECA) form part of a range of virtual characters whose intended purpose include engaging in natural conversations with human users. While works in literature are ripe with descriptions of attempts at producing viable ECA architectures, few authors have addressed the role of episodic memory models in conversational agents. This form of memory, which provides a sense of autobiographic record-keeping in humans, has only recently been peripherally integrated into...
Show moreEmbodied Conversational Agents (ECA) form part of a range of virtual characters whose intended purpose include engaging in natural conversations with human users. While works in literature are ripe with descriptions of attempts at producing viable ECA architectures, few authors have addressed the role of episodic memory models in conversational agents. This form of memory, which provides a sense of autobiographic record-keeping in humans, has only recently been peripherally integrated into dialog management tools for ECAs. In our work, we propose to take a closer look at the shared characteristics of episodic memory models in recent examples from the field. Additionally, we propose several enhancements to these existing models through a unified episodic memory model for ECAÃÂ's. As part of our research into episodic memory models, we present a process for determining the prevalent contexts in the conversations obtained from the aforementioned interactions. The process presented demonstrates the use of statistical and machine learning services, as well as Natural Language Processing techniques to extract relevant snippets from conversations. Finally, mechanisms to store, retrieve, and recall episodes from previous conversations are discussed. A primary contribution of this research is in the context of contemporary memory models for conversational agents and cognitive architectures. To the best of our knowledge, this is the first attempt at providing a comparative summary of existing works. As implementations of ECAs become more complex and encompass more realistic conversation engines, we expect that episodic memory models will continue to evolve and further enhance the naturalness of conversations.
Show less - Date Issued
- 2010
- Identifier
- CFE0003353, ucf:48443
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003353
- Title
- AN ALL-AGAINST-ONE GAME APPROACH FOR THE MULTI-PLAYER PURSUIT-EVASION PROBLEM.
- Creator
-
Talebi, Shahriar, Simaan, Marwan, Qu, Zhihua, Vosoughi, Azadeh, University of Central Florida
- Abstract / Description
-
The traditional pursuit-evasion game considers a situation where one pursuer tries to capture an evader, while the evader is trying to escape. A more general formulation of this problem is to consider multiple pursuers trying to capture one evader. This general multi-pursuer one-evader problem can also be used to model a system of systems in which one of the subsystems decides to dissent (evade) from the others while the others (the pursuer subsystems) try to pursue a strategy to prevent it...
Show moreThe traditional pursuit-evasion game considers a situation where one pursuer tries to capture an evader, while the evader is trying to escape. A more general formulation of this problem is to consider multiple pursuers trying to capture one evader. This general multi-pursuer one-evader problem can also be used to model a system of systems in which one of the subsystems decides to dissent (evade) from the others while the others (the pursuer subsystems) try to pursue a strategy to prevent it from doing so. An important challenge in analyzing these types of problems is to develop strategies for the pursuers along with the advantages and disadvantages of each. In this thesis, we investigate three possible and conceptually different strategies for pursuers: (1) act non-cooperatively as independent pursuers, (2) act cooperatively as a unified team of pursuers, and (3) act individually as greedy pursuers. The evader, on the other hand, will consider strategies against all possible strategies by the pursuers. We assume complete uncertainty in the game i.e. no player knows which strategies the other players are implementing and none of them has information about any of the parameters in the objective functions of the other players. To treat the three pursuers strategies under one general framework, an all-against-one linear quadratic dynamic game is considered and the corresponding closed-loop Nash solution is discussed. Additionally, different necessary and sufficient conditions regarding the stability of the system, and existence and definiteness of the closed-loop Nash strategies under different strategy assumptions are derived. We deal with the uncertainties in the strategies by first developing the Nash strategies for each of the resulting games for all possible options available to both sides. Then we deal with the parameter uncertainties by performing a Monte Carlo analysis to determine probabilities of capture for the pursuers (or escape for the evader) for each resulting game. Results of the Monte Carlo simulation show that in general, pursuers do not always benefit from cooperating as a team and that acting as non-cooperating players may yield a higher probability of capturing of the evader.
Show less - Date Issued
- 2017
- Identifier
- CFE0007135, ucf:52314
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007135