Current Search: cross-linking (x)
View All Items
- Title
- PHYSICOCHEMICAL AND THERMOCHEMICAL PROPERTIES OF SULFONATED POLY(ETHERETHERKETONE) ELECTROLYTE MEMBRANES.
- Creator
-
Rhoden, Stephen, Diaz, Diego, University of Central Florida
- Abstract / Description
-
Fuel cells have long been seen as an alternative to combustion powered and diesel powered engines and turbines. Production of energy via a fuel cell conversion method can generate up to 60% efficiency in comparison to 30% using a combustion powered engine, with low co-production of harmful side-products. The polymer electrolyte membrane (PEM) adapted for the fuel cell application is one of the main components that determines the overall efficiency. This research project was focused towards...
Show moreFuel cells have long been seen as an alternative to combustion powered and diesel powered engines and turbines. Production of energy via a fuel cell conversion method can generate up to 60% efficiency in comparison to 30% using a combustion powered engine, with low co-production of harmful side-products. The polymer electrolyte membrane (PEM) adapted for the fuel cell application is one of the main components that determines the overall efficiency. This research project was focused towards novel PEMs, such as sulfonated poly(etheretherketone) or SPEEK, which are cost-efficient and robust with high proton conductivities under hydrated conditions. The degree of sulfonation (DS) of a particular SPEEK polymer determines the proton conducting ability, as well as the long term durability. For SPEEK with high DS, the proton conduction is facile, but the mechanical stability of the polymer decreases almost proportionally. While low DS SPEEK does not have sufficient sulfonic acid density for fast proton conduction in the membrane, the membrane keeps its mechanical integrity under fully saturated conditions. The main purpose of this work was to address both issues encountered with SPEEK sulfonated to low and high DS. The addition of both solid acids and synthetic cross-links were studied to address the main downfalls of the respective SPEEK polymers. Optimization of these techniques led to increased understanding of PEMs and notably better electrochemical performance of these fuel cell materials. Oxo-acids such as tungsten (VI) oxide (WO3) and phosphotungstic acid (PTA) have been identified as candidate materials for creating SPEEK composite membranes. The chemistry of these oxo-acids is well known, with their use as highly acidic catalyst centers adopted for countless homogeneous and heterogeneous, organic and inorganic reactions. Uniform dispersion of WO3 hydrate in SPEEK solution was done by a sol-gel process in which the filler particles were grown in an ionomer solution, cast and allowed to dry. PTA composites were made by adding the solid acid directly to a solution of the ionomer and casting. The latter casting was allowed to dry and Cs+- exchanged to stabilize the PTA from dissolution and leaching from the membrane. The chemical and physical properties of these membranes were characterized and evaluated using mainly conductometric and X-ray photoelectron spectroscopic methods. Composite SPEEK/ PTA membranes showed a 50% decrease in PEM resistance under hydrogen fuel cell testing conditions, while SPEEK/ WO3 composites demonstrated a ten-fold increase in the membrane's in-plane proton conductivity. The chemical and physical properties of these composites changed with respect to their synthesis and fabrication procedures. This study will expound upon their relations.
Show less - Date Issued
- 2010
- Identifier
- CFE0003470, ucf:48976
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003470
- Title
- Synthesis and Study of Chemo-Hydrothermally Derived Water-Soluble Chitosan and Chiosan-Metal Oxide Composites.
- Creator
-
Basumallick, Srijita, Santra, Swadeshmukul, Kolpashchikov, Dmitry, Zou, Shengli, Ye, Jingdong, Seal, Sudipta, University of Central Florida
- Abstract / Description
-
Chitosan (CS) is a man-made sugar based biopolymer derived from chitin, the second most abundant natural polymer after cellulose. Chitin is sourced from crustacean species such as shrimps and crabs. The chemical structure of chitin contains N-Acetyl D-glucosamine monomer units which forms CS upon deacetylation. In CS, ?-(1-4) linked D-glucosamine units are randomly distributed. Approximately 75% - 80% sugar units contains primary amine groups in commercially available low molecular weight CS....
Show moreChitosan (CS) is a man-made sugar based biopolymer derived from chitin, the second most abundant natural polymer after cellulose. Chitin is sourced from crustacean species such as shrimps and crabs. The chemical structure of chitin contains N-Acetyl D-glucosamine monomer units which forms CS upon deacetylation. In CS, ?-(1-4) linked D-glucosamine units are randomly distributed. Approximately 75% - 80% sugar units contains primary amine groups in commercially available low molecular weight CS. Biodegradability, low toxicity, mucoadhesive and transfecting properties of CS polymer are attractive for applications as oral and nasal drug delivery systems. Chitosan polymer is water insoluble at neutral pH. To solubilize CS, dilute mineral acid (such as hydrochloric acid and nitric acid) or organic acid (such as acetic acid) is often used. CS contains both hydroxyl and primary amine groups in its structure. In acidic solution, the amine functional groups become protonated (positively charged). Positively charged CS remains stable only in low pH condition due to electrostatic repulsion of charged polymer segments. Therefore, by using a suitable anionic (negatively charged) cross-linker, stable CS particles (such as nanoparticles and microspheres) can be prepared. This is popularly known as ionic gelation method. Extensive studies have been done on the synthesis of drug loaded CS particles where particle integrity is maintained by ionic gelation using tripolyphosphate (TPP, an anionic cross-linker). Drug encapsulated CS-TPP composite particles are shown to maintain biodegradability and biocompatibility. The CS-TPP composite particles exhibits very limited dispersibility at neutral pH conditions specifically in neutral buffered conditions. A number of biomedical applications (including systemic drug formulations) however demands buffer-stable CS composite particles for achieving optimal therapeutic outcome.To overcome the above dispersibility issues, CS polymer and CS particles units have been chemically modified using water soluble motifs (such as water soluble polymer or ligands). This approach is very cumbersome and usually involves multiple purification steps. Chemical modification of natural CS chain introduces risks of compromising biodegradability and biocompatibility. Therefore, there is a strong need for developing a straightforward method of making water soluble CS and CS particles.Chapter 1 of this dissertation presents an overview of the CS polymer, various applications of CS polymers, methods of making CS polymers and CS particles, current limitations of synthesis methods for preparing stable chitosan particles at neutral pH conditions and finally delineates the scope of the proposed research work.Chapter 2 describes development of chemo-hydrothermal synthesis method for producing water soluble CS polymer and water dispersible CS composite particles. In this method, a chemical (depolymerizing agent) is used to treat CS polymer in a hydrothermal (high temperature and high pressure) condition. Two types of depolymerizing agents have been used, an inorganic acid (e.g. hydrochloric acid, HCl) and a bicarboxylic organic acid (e.g. tartaric acid, TA). In both cases, 100% depolymerized CS polymer was obtained. Chemical characteristics of the depolymerized CS were comparable to acid solubilized CS. CS polymer exhibits weak fluorescence. Interestingly, hydrothermally depolymerized CS shows strong fluorescence properties irrespective of the nature of depolymerizing agent used. TA not only depolymerized CS but also formed CS-TA composite particulate structures in solution via self-assembly. The CS-TA composite particles are stable in a wide pH range from 5 to 11. Detailed spectroscopic and microscopic studies have been done to understand the basic mechanism of particle formation and increase in fluorescence properties (i.e. structure-property relationship). Usefulness of CS-TA in solubilizing water-insoluble cargos (such as fluorescein isothiocyanate, FITC) has been demonstrated.Chapter 3 is focused on hydrothermal synthesis of mixed-valence copper (Cu) oxide loaded CS-TA composite particles and their characterization. Crystalline Cu oxide nanoparticles were coated with the CS-TA layer. Water dispersibility of Cu oxide greatly improved upon coating with CS-TA material. To demonstrate catalytic activity of Cu-oxide loaded CS-TA film in sequestering carbon dioxide (CO2), an electrochemical setup was used. Electrochemical reduction of CO2 was successfully demonstrated. It was observed that CS-TA environment not only maintained catalytic properties of Cu oxide but also allowed solution processing of Cu-oxide film onto the electrode surface.Chapter 4 discusses a convenient method of making monodispersed water dispersible Cu loaded chitosan nanoparticles (Cu-CS) using HCl depolymerized CS polymer. The purpose of this study was to investigate if there was any improvement in antibacterial properties of Cu-CS nanoparticles prepared using hydrothermally treated CS polymer. Interestingly, it was observed that the antibacterial efficacy of Cu was not compromised in Cu-CS nanoparticles. Moreover, the materials exhibited improvement in antibacterial efficacy against both Gram-negative and Gram-positive bacteria species. A plausible mechanism has been proposed to explain antibacterial results.Chapter 5 summarizes major findings of this dissertation research and presents future research directions.
Show less - Date Issued
- 2014
- Identifier
- CFE0005461, ucf:50395
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005461