Current Search: dehalogenation (x)
View All Items
- Title
- REACTION RATES FOR THE DEHALOGENATION OF TRICHLOROETHYLENE USING VARIOUS TYPES OF ZERO-VALENT IRON.
- Creator
-
Stewart, Neil, Clausen, Christian, University of Central Florida
- Abstract / Description
-
Remediation of trichloroethylene (TCE) and other chlorinated solvents is of great concern due to their toxicity and their persistence in the environment. Iron has been used extensively in the past decade as a subsurface reactive agent for the remediation of dense, nonaqueous-phase liquids (DNAPLs). Permeable reactive barrier walls (PRBW) have been installed at many sites around the country to treat contaminated plumes resulting from the presence of DNAPL pools. The use of zero-valent metals,...
Show moreRemediation of trichloroethylene (TCE) and other chlorinated solvents is of great concern due to their toxicity and their persistence in the environment. Iron has been used extensively in the past decade as a subsurface reactive agent for the remediation of dense, nonaqueous-phase liquids (DNAPLs). Permeable reactive barrier walls (PRBW) have been installed at many sites around the country to treat contaminated plumes resulting from the presence of DNAPL pools. The use of zero-valent metals, such as iron, to effectively reductively dechlorinate DNAPLs has been employed as the reactive material in these PRBWs (Gillham et al., 1993). However, limited work has been conducted to compare the kinetics of TCE degradation related to various manufacturing sources of iron and the pretreatment the iron receives prior to subsurface installation. Determination of iron reactivity through kinetic studies makes it possible to compare different types of iron and the effects that pretreatment has on reactivity. This research utilized rate studies, scanning electron microscopy, and BET surface area analysis for iron particles that were obtained from several sources. Peerless Metal Powders and Abrasive, Inc., Connelly-GPM, Inc., and Alfa Aesar Inc., produced the iron particles using various manufacturing techniques, and nanoscale iron was synthesized in our laboratory. By utilizing zero-headspace batch vial experiments and gas chromatography, changes in TCE concentration were determined. The data obtained produced linear first order rate plots from which dehalogenation rate constants were obtained. The rate constants were normalized by iron mass, solution volume, and surface area. The pretreatment techniques employed in this study, including ultrasonication and acid washing, demonstrated a beneficial effect by removing oxide precipitates from the iron surface, thus increasing the reactivity of the iron. Mass loading studies revealed how physical factors, associated with the experimental setup, could influence reaction rates. Surface area studies confirmed that the smaller iron particles, such as the nanoscale iron, have a greater surface area per unit mass. The large mass and volume normalized rate constant, kMV, obtained for the nanoscale iron was a result of this high surface area. However, the calculated surface area normalized rate constant, kSA, for the nanoscale iron was significantly lower than those for the granular iron samples tested. It was concluded that differences in surface area normalized rate constants, between different iron particle types, could be attributed to inherent characteristics of the iron, such as composition and crystal structure.
Show less - Date Issued
- 2005
- Identifier
- CFE0000797, ucf:46583
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000797
- Title
- Investigation of a Novel Magnesium and Acidified Ethanol System for the Degradation of Persistent Organic Pollutants.
- Creator
-
Maloney, Phillip, Yestrebsky, Cherie, Clausen, Christian, Elsheimer, Seth, Frazer, Andrew, Quinn, Jacqueline, University of Central Florida
- Abstract / Description
-
For centuries chemists have sought to improve humankind's quality of life and address many of society's most pressing needs through the development of chemical processes and synthesis of new compounds, often with phenomenal results. Unfortunately, there also are many examples where these chemicals have had unintended, detrimental consequences that are not apparent until years or decades after their initial use. There are numerous halogenated molecules in this category that are globally...
Show moreFor centuries chemists have sought to improve humankind's quality of life and address many of society's most pressing needs through the development of chemical processes and synthesis of new compounds, often with phenomenal results. Unfortunately, there also are many examples where these chemicals have had unintended, detrimental consequences that are not apparent until years or decades after their initial use. There are numerous halogenated molecules in this category that are globally dispersed, resistant to natural degradation processes, bioaccumulative, and toxic to living organisms. Chemicals such as these are classified as persistent organic pollutants (POPs), and due to their negative environmental and health effects, they require safe, effective, and inexpensive means of remediation.This research focuses on the development and optimization of a reaction matrix capable of reductively dehalogenating several POPs. Initial experiments determined that powdered magnesium and 1% V/V acetic acid in absolute ethanol was the most effective system for degrading polychlorinated biphenyl (PCB), an extraordinarily recalcitrant environmental contaminant. Further studies showed that this matrix also was capable of degrading polychlorinated dibenzo-p-dioxins (PCDDs), polybrominated diphenyl ethers (PBDEs), and four organochlorine pesticides (OCPs); dieldrin, heptachlor, heptachlor epoxide, and chlordane. During this phase of testing, field samples contaminated with chlordane were washed with ethanol and this ethanol/chlordane solution was degraded using the same reaction matrix, thereby demonstrating this technology's potential for (")real-world(") remediation projects. Finally, a set of experiments designed to provide some insight into the mechanism of dechlorination seems to indicate that two distinct processes are necessary for degradation to occur. First, the passivated outer layer of the magnesium must be removed in order to expose the zero-valent magnesium core. Next, an electron is transferred from the magnesium to the target molecule, causing the cleavage of the halide bond and the subsequent abstraction of either a hydrogen or proton from a solvent molecule. It is anticipated that an understanding of these fundamental chemical processes will allow this system to be tailored to a wide range of complex environmental media.
Show less - Date Issued
- 2013
- Identifier
- CFE0005109, ucf:50723
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005109