Current Search: equilibrium (x)
View All Items
- Title
- ON MODELING HIV INFECTION OF CD4+ T CELLS.
- Creator
-
Comerford, Amy, Mohapatra, Ram, University of Central Florida
- Abstract / Description
-
We examine an early model for the interaction of HIV with CD4+ T cells in vivo and define possible parameters and effects of said parameters on the model. We then examine a newer, more simplified model for the interaction of HIV with CD4+ T cells that also considers four populations: uninfected T cells, latently infected T cells, actively infected T cells, and free virus. The stability of both the disease free steady state and the endemically infected steady state are examined utilizing...
Show moreWe examine an early model for the interaction of HIV with CD4+ T cells in vivo and define possible parameters and effects of said parameters on the model. We then examine a newer, more simplified model for the interaction of HIV with CD4+ T cells that also considers four populations: uninfected T cells, latently infected T cells, actively infected T cells, and free virus. The stability of both the disease free steady state and the endemically infected steady state are examined utilizing standard methods and the Routh-Hurwitz criteria. We show that if N, the number of infectious virions produced per actively infected T cell, is less than a critical value, , then the uninfected state is the only steady state in the non negative orthant, and this state is stable. We establish an expression for . If , then the uninfected steady state is unstable, and the endemically infected state can be stable or unstable, depending on the value of the parameters utilized.
Show less - Date Issued
- 2006
- Identifier
- CFE0001093, ucf:46769
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001093
- Title
- THREE ESSAYS ON DIFFERENTIAL GAMES AND RESOURCE ECONOMICS.
- Creator
-
Ling, Chen, Caputo, Michael, University of Central Florida
- Abstract / Description
-
This dissertation consists of three chapters on the topic of differential games and resource economics. The first chapter extends the envelope theorem to the class of discounted infinite horizon differential games that posses locally differentiable Nash equilibria. The theorems cover both the open-loop and feedback information structures, and are applied to a simple analytically solvable linear-quadratic game. The results show that the conventional interpretation of the costate variable as...
Show moreThis dissertation consists of three chapters on the topic of differential games and resource economics. The first chapter extends the envelope theorem to the class of discounted infinite horizon differential games that posses locally differentiable Nash equilibria. The theorems cover both the open-loop and feedback information structures, and are applied to a simple analytically solvable linear-quadratic game. The results show that the conventional interpretation of the costate variable as the shadow value of the state variable along the equilibrium path is only valid for feedback Nash equilibria, but not for open-loop Nash equilibria. The specific linear-quadratic structure provides some extra insights on the theorem. For example, the costate variable is shown to uniformly overestimate the shadow value of the state variable in the open-loop case, but the growth rate of the costate variable are the same as the shadow value under open-loop and feedback information structures. Chapter two investigates the qualitative properties of symmetric open-loop Nash equilibria for a ubiquitous class of discounted infinite horizon differential games. The results show that the specific functional forms and the value of parameters used in the game are crucial in determining the local asymptotic stability of steady state, the steady state comparative statics, and the local comparative dynamics. Several sufficient conditions are provided to identify a local saddle point type of steady state. An important steady state policy implication from the model is that functional forms and parameter values are not only quantitatively important to differentiate policy tools, but they are also qualitatively important. Chapter three shifts the interests to the lottery mechanism for rationing public resources. It characterizes the optimal pricing strategies of lotteries for a welfare-maximization agency. The optimal prices are shown to be positive for a wide range of individual private value distributions, suggesting that the sub-optimal pricing may result in a significant efficiency loss and that the earlier studies under zero-pricing may need to be re-examined. In addition, I identify the revenue and welfare equivalency propositions across lottery institutions. Finally, the numerical simulations strongly support the findings.
Show less - Date Issued
- 2010
- Identifier
- CFE0003195, ucf:48752
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003195
- Title
- PLASMA TEMPERATURE MEASUREMENTS IN THE CONTEXT OF SPECTRAL INTERFERENCE.
- Creator
-
Seesahai, Brandon, Baudelet, Matthieu, University of Central Florida
- Abstract / Description
-
The path explored in this thesis is testing a plasma temperature measurement approach that accounts for interference in a spectrum. The Atomic Emission Spectroscopy (AES) technique used is called Laser Induced Breakdown Spectroscopy (LIBS) and involves focusing a laser pulse to a high irradiance onto a sample to induced a plasma. Spectrally analyzing the plasma light provides a "finger print" or spectrum of the sample. Unfortunately, spectral line broadening is a type of interference...
Show moreThe path explored in this thesis is testing a plasma temperature measurement approach that accounts for interference in a spectrum. The Atomic Emission Spectroscopy (AES) technique used is called Laser Induced Breakdown Spectroscopy (LIBS) and involves focusing a laser pulse to a high irradiance onto a sample to induced a plasma. Spectrally analyzing the plasma light provides a "finger print" or spectrum of the sample. Unfortunately, spectral line broadening is a type of interference encountered in a LIBS spectrum because it blends possible ionic or atomic transitions that occur in plasma. To make use of the information or transitions not resolved in a LIBS spectrum, a plasma temperature method is developed. The basic theory of a LIBS plasma, broadening mechanisms, thermal equilibrium and distribution laws, and plasma temperature methods are discussed as background support for the plasma temperature method tested in this thesis. In summary, the plasma temperature method analyzes the Full Width at Half the Maximum (FWHM) of each spectral line for transitions provided from a database and uses them for temperature measurements. The first implementation of the temperature method was for simulated spectra and the results are compared to other conventional temperature measurement techniques. The temporal evolution of experimental spectra are also taken as a function of time to observe if the newly developed temperature technique can perform temporal measurements. Lastly, the temperature method is tested for a simulated, single element spectrum when considering interferences from all the elements provided in an atomic database. From stimulated and experimental spectra analysis to a global database consideration, the advantages and disadvantages of the temperature method are discussed.
Show less - Date Issued
- 2016
- Identifier
- CFH2000140, ucf:46057
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH2000140
- Title
- Adsorption Capacity Assessment of Advance Green Environmental Media to Remove Nutrients from Stormwater-Runoff.
- Creator
-
Elhakiem, Hanan, Chang, Ni-bin, Sadmani, A H M Anwar, Yu, Haofei, University of Central Florida
- Abstract / Description
-
Best Management Practices (BMPs) in stormwater treatment are a suite of treatment alternatives to deal with pollutant removal problems from stormwater runoff. Biosorption-activated media (BAM) are green sorption media consists of recycled materials have shown excellent nutrient removal as an effective BMP by enhancing physicochemical and microbiological processes. In this study, Iron-Filling Green Environmental Media (denoted as IFGEM-3) and Advanced Green Environmental Media 1 and 2 (denoted...
Show moreBest Management Practices (BMPs) in stormwater treatment are a suite of treatment alternatives to deal with pollutant removal problems from stormwater runoff. Biosorption-activated media (BAM) are green sorption media consists of recycled materials have shown excellent nutrient removal as an effective BMP by enhancing physicochemical and microbiological processes. In this study, Iron-Filling Green Environmental Media (denoted as IFGEM-3) and Advanced Green Environmental Media 1 and 2 (denoted as AGEM-1 and AGEM-2) were produced and tested for their adsorption capacities as well as removal and recovery potential for phosphate, nitrate, and ammonia against natural soil (baseline) collected from a stormwater retention basin in Ocala, FL. A set of isotherm and column tests were conducted at room temperature with varying contact times. Two media with the best adsorption performances were further tested to determine their life expectancy. The green sorption media characteristics and adsorption behaviors were further analyzed and realized by using a few existing isotherm models. The collected data on physical properties such as hydraulic conductivity, porosity, surface area, and density help justifying the comparative results. The results showed that AGEM-2 has the highest average nitrate removal efficiency (76.55%) when compared to IFGEM-3 (39.0%) and AGEM-1 (33.67%). Furthermore, IFGEM-3, AGEM-1 and AGEM-2 achieved the highest phosphate removals after only 30 minutes of contact time. It is indicative that IFGEM-3, AGEM-1 and AGEM-2 media all produced ammonia and the rates of production consistently increase as contact time increases. However, AGEM-2 generated an average of 35.22% more ammonia than IFGEM-3 and AGEM-1 suggesting it can be further utilized as a soil amendment. Natural soil showed no nutrient removal, however. The maximum adsorption capacities (qmax) derived by the isothermal test at high influent concentrations of 2mg/L phosphate and 2mg/L nitrate were found to be less than the qmax obtained from the column tests for IFGEM-3 and AGEM-2 with respect to nitrate. IFGEM-3 and AGEM-2 were further tested with respect to nitrate for their maximum adsorption capacities and their life expectancies based on column tests. The results indicated that AGEM-2 has a longer life expectancy and a higher adsorption capacity than IFGEM-3, in terms of nitrate removal, which is consistent with isotherm results. It is recommended that AGEM-2 be selected for nutrient removal in future stormwater treatment based on its better adsorption performance and recovery potential. ?
Show less - Date Issued
- 2019
- Identifier
- CFE0007800, ucf:52332
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007800
- Title
- Observations, Thermochemical Calculations, and Modeling of Exoplanetary Atmospheres.
- Creator
-
Blecic, Jasmina, Harrington, Joseph, Britt, Daniel, Peale, Robert, Fortney, Jonathan, University of Central Florida
- Abstract / Description
-
This dissertation as a whole aims to provide the means to better understand hot-Jupiter planets through observing, performing thermochemical calculations, and modeling their atmospheres. We used Spitzer multi-wavelength secondary-eclipse observations to characterize planetary atmospheres. We chose targets with high signal-to-noise ratios, as their deep eclipses allow us to detect signatures of spectral features and assess planetary atmospheric structure and composition with greater certainty....
Show moreThis dissertation as a whole aims to provide the means to better understand hot-Jupiter planets through observing, performing thermochemical calculations, and modeling their atmospheres. We used Spitzer multi-wavelength secondary-eclipse observations to characterize planetary atmospheres. We chose targets with high signal-to-noise ratios, as their deep eclipses allow us to detect signatures of spectral features and assess planetary atmospheric structure and composition with greater certainty. Chapter 1 gives a short introduction. Chapter 2 presents the Spitzer secondary-eclipse analysis and atmospheric characterization of WASP-14b. The decrease in flux when a planet passes behind its host star reveals the planet dayside thermal emission, which, in turn, tells us about the atmospheric temperature and pressure profiles and molecular abundances. WASP-14b is a highly irradiated, transiting hot Jupiter. By applying a Bayesian approach in the atmospheric analysis, we found an absence of thermal inversion contrary to theoretical predictions. Chapter 3 describes the infrared observations of WASP-43b's Spitzer secondary eclipses, data analysis, and atmospheric characterization. WASP-43b is one of the closest-orbiting hot Jupiters, orbiting one of the coolest stars with a hot Jupiter. This configuration provided one of the strongest signal-to-noise ratios. The atmospheric analysis ruled out a strong thermal inversion in the dayside atmosphere of WASP-43b and put a nominal upper limit on the day-night energy redistribution. Chapter 4 presents an open-source Thermochemical Equilibrium Abundances (TEA) code and its application to several hot-Jupiter temperature and pressure models. TEA calculates the abundances of gaseous molecular species using the Gibbs free-energy minimization method within an iterative Lagrangian optimization scheme. The thermochemical equilibrium abundances obtained with TEA can be used to initialize atmospheric models of any planetary atmosphere. The code is written in Python, in a modular fashion, and it is available to the community via http://github.com/dzesmin/TEA. Chapter 5 presents my contributions to an open-source Bayesian Atmospheric Radiative Transfer (BART) code, and its application to WASP-43b. BART characterizes planetary atmospheres based on the observed spectroscopic information. It initializes a planetary atmospheric model, performs radiative-transfer calculations to produce models of planetary spectra, and using a statistical module compares models with observations. We describe the implementation of the initialization routines, the atmospheric profile generator, the eclipse module, the best-fit routines, and the contribution function module. We also present a comprehensive atmospheric analysis of all WASP-43b secondary-eclipse data obtained from the space- and ground-based observations using BART.
Show less - Date Issued
- 2015
- Identifier
- CFE0005926, ucf:50841
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005926
- Title
- computational study of traveling wave solutions and global stability of predator-prey models.
- Creator
-
Zhu, Yi, Qi, Yuanwei, Rollins, David, Shuai, Zhisheng, Zhai, Lei, University of Central Florida
- Abstract / Description
-
In this thesis, we study two types of reaction-diffusion systems which have direct applications in understanding wide range of phenomena in chemical reaction, biological pattern formation and theoretical ecology.The first part of this thesis is on propagating traveling waves in a class of reaction-diffusion systems which model isothermal autocatalytic chemical reactions as well as microbial growth and competition in a flow reactor. In the context of isothermal autocatalytic systems, two...
Show moreIn this thesis, we study two types of reaction-diffusion systems which have direct applications in understanding wide range of phenomena in chemical reaction, biological pattern formation and theoretical ecology.The first part of this thesis is on propagating traveling waves in a class of reaction-diffusion systems which model isothermal autocatalytic chemical reactions as well as microbial growth and competition in a flow reactor. In the context of isothermal autocatalytic systems, two different cases will bestudied. The first is autocatalytic chemical reaction of order $m$ without decay. The second is chemical reaction of order $m$ with a decay of order $l$, where $m$ and $l$ are positive integers and $m(>)l\ge1$. A typical system is $A + 2B \rightarrow3B$ and $B\rightarrow C$ involving three chemical species, a reactant A and an auto-catalyst B and C an inert chemical species.We use numerical computation to give more accurate estimates on minimum speed of traveling waves for autocatalytic reaction without decay, providing useful insight in the study of stability of traveling waves. For autocatalytic reaction of order $m = 2$ with linear decay $l = 1$, which hasa particular important role in biological pattern formation, it is shown numerically that there exist multiple traveling waves with 1, 2 and 3 peaks with certain choices of parameters.The second part of this thesis is on the global stability of diffusive predator-prey system of Leslie Type and Holling-Tanner Type in a bounded domain $\Omega\subset R^N$ with no-flux boundary condition. By using a new approach, we establish much improved global asymptotic stability of a unique positiveequilibrium solution. We also show the result can be extended to more general type of systems with heterogeneous environment and/or other kind of kinetic terms.
Show less - Date Issued
- 2016
- Identifier
- CFE0006519, ucf:51359
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006519
- Title
- Three-phase contact line phenomena in droplets on solid and liquid surfaces: electrocapillary, pinning, wetting line velocity effect, and free liquid surface deformation.
- Creator
-
Shabani, Roxana, Cho, Hyoung, Kumar, Ranganathan, Kapat, Jayanta, Chow, Louis, Zhai, Lei, University of Central Florida
- Abstract / Description
-
In this dissertation, physical phenomena relevant to (i) an interface formed between two fluids and a solid phase (wettingline) and (ii) an interface between three fluids (triple contact line) were investigated. In the former case, the wetting line (WL)phenomena, which encompass the wetting line energy (WLE), the wetting line velocity (WLV), and the contact anglehysteresis, were studied using a micropump based on electrowetting on dielectric (EWOD). In the latter case, the air filmlubrication...
Show moreIn this dissertation, physical phenomena relevant to (i) an interface formed between two fluids and a solid phase (wettingline) and (ii) an interface between three fluids (triple contact line) were investigated. In the former case, the wetting line (WL)phenomena, which encompass the wetting line energy (WLE), the wetting line velocity (WLV), and the contact anglehysteresis, were studied using a micropump based on electrowetting on dielectric (EWOD). In the latter case, the air filmlubrication effect and the liquid free surface deformation were taken into account to explain the dual equilibrium states ofwater droplets on liquid free surfaces. A micropump based on droplet/meniscus pressure gradient generated by EWOD was designed and fabricated. By alteringthe contact angle between liquid and solid using an electric field a pressure gradient was induced and a small droplet waspumped into the channel. The flow rate in the channel was found to be constant in spite of the changes in the droplet'sradius. The WL phenomena were studied to unravel the physical concept behind the micropump constant flow rate. Theobservation and measurement reveal that the shrinking input droplet changes its shape in two modes in time sequence: (i)its contact angle decreases, while its wetting area remains constant, and (ii) its WL starts to move while its contact anglechanges. Contact angles were measured for the advancing and receding WLs at different velocities to capture a full pictureof contact angle behavior. The effects of the WLE on the static contact angle and the WLV on the dynamic contact angle inthe pump operation were investigated. Also the effect of EWOD voltage on the magnitude and uniformity of the micropumpflow rate was studied. Dynamic contact angles were used to accurately calculate the pressure gradient between the dropletand the meniscus, and estimate the flow rate. It was shown that neglecting either of these effects not only results in aconsiderable gap between the predicted and the measured flow rates but also in an unphysical instability in the flow rateanalysis. However, when the WLE and WLV effects were fully taken into account, an excellent agreement between thepredicted and the experimental flow rates was obtained.For the study of the TCL between three fluids, aqueous droplets were formed at oil-air interface and two stableconfigurations of (i) non-coalescent droplet and (ii) cap/bead droplet were observed. General solutions for energy and forceanalysis were obtained and were shown to be in good agreement with the experimental observations. Further the energybarrier obtained for transition from configuration (i) to (ii) was correlated to the droplet release height and the probability ofnon-coalescent droplet formation. Droplets formed on the solid surfaces and on the free surface of immiscible liquids have various applications indroplet-based microfluidic devices. This research provides an insight into their formation and manipulation.
Show less - Date Issued
- 2013
- Identifier
- CFE0005253, ucf:50598
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005253
- Title
- A THREE-DIMENSIONAL BAY/ESTUARY MODEL TO SIMULATE WATER QUALITY TRANSPORT.
- Creator
-
Yu, Jing, Yeh, Gour-Tsyh, University of Central Florida
- Abstract / Description
-
This thesis presents the development of a numerical water quality model using a general paradigm of reaction-based approaches. In a reaction-based approach, all conceptualized biogeochemical processes are transformed into a reaction network. Through the decomposition of species governing equations via Gauss-Jordan column reduction of the reaction network, (1) redundant fast reactions and irrelevant kinetic reactions are removed from the system, which alleviates the problem of unnecessary and...
Show moreThis thesis presents the development of a numerical water quality model using a general paradigm of reaction-based approaches. In a reaction-based approach, all conceptualized biogeochemical processes are transformed into a reaction network. Through the decomposition of species governing equations via Gauss-Jordan column reduction of the reaction network, (1) redundant fast reactions and irrelevant kinetic reactions are removed from the system, which alleviates the problem of unnecessary and erroneous formulation and parameterization of these reactions, and (2) fast reactions and slow reactions are decoupled, which enables robust numerical integrations. The system of species transport equations is transformed to reaction-extent transport equations, which is then approximated with two subsets: algebraic equations and kinetic-variables transport equations. As a result, the model alleviates the needs of using simple partitions for fast reactions. With the diagonalization strategy, it makes the inclusion of arbitrary number of fast and kinetic reactions relatively easy, and, more importantly, it enables the formulation and parameterization of kinetic reactions one by one. To demonstrate the general paradigm, QAUL2E was recasted in the mode of a reaction network. The model then was applied to the Loxahatchee estuary to study its response to a hypothetical biogeochemical loading from its surrounding drainage. Preliminary results indicated that the model can simulate four interacting biogeochemical processes: algae kinetics, nitrogen cycle, phosphorus cycle, and dissolved oxygen balance.
Show less - Date Issued
- 2006
- Identifier
- CFE0001372, ucf:46991
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001372
- Title
- INTERDIFFUSION BEHAVIOR OF U-MO ALLOYS IN CONTACT WITH AL AND AL-SI ALLOYS.
- Creator
-
Perez, Emmanuel, Sohn, Yong-Ho, University of Central Florida
- Abstract / Description
-
U-Mo dispersion and monolithic fuels embedded in Al-alloy matrix are under development to fulfill the requirements of research reactors to use low-enriched molybdenum stabilized uranium alloys as fuels. The system under consideration in this study consisted of body centered cubic (gamma) U-Mo alloys embedded in an Al structural matrix. Significant interaction has been observed to take place between the U-Mo fuel and the Al matrix during manufacturing of the fuel-plate system assembly and...
Show moreU-Mo dispersion and monolithic fuels embedded in Al-alloy matrix are under development to fulfill the requirements of research reactors to use low-enriched molybdenum stabilized uranium alloys as fuels. The system under consideration in this study consisted of body centered cubic (gamma) U-Mo alloys embedded in an Al structural matrix. Significant interaction has been observed to take place between the U-Mo fuel and the Al matrix during manufacturing of the fuel-plate system assembly and during irradiation in reactors. These interactions produce Al-rich phases with physical and thermal properties that adversely affect the performance of the fuel system and can lead to premature failure. In this study, interdiffusion and microstructural development in the U-Mo vs. Al system was examined using solid-to-solid diffusion couples consisting of U-7wt.%Mo, U-10wt.%Mo and U-12wt.%Mo vs. pure Al, annealed at 600°C for 24 hours. The influence of Si alloying addition (up to 5 wt.%) in Al on the interdiffusion microstructural development was also examined using solid-to-solid diffusion couples consisting of U-7wt.%Mo, U-10wt.%Mo and U-12wt.%Mo vs. pure Al, Al-2wt.%Si, and Al-5wt.%Si annealed at 550°C for 1, 5 and 20 hours. To further clarify the diffusional behavior in the U-Mo-Al and U-Mo-Al-Si systems, Al-rich 85.7Al-11.44U-2.86Mo, 87.5Al-10U-2.5Mo, 56.1Al-18.9Si-21.9U-3.1Mo and 69.3Al-11.9Si-18.8U (at.%) alloys were cast and homogenized at 500°C to determine the equilibrium phases of the system. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron probe microanalysis (EPMA) and X-ray diffraction (XRD) were employed to examine the phase development in the diffusion couples and the cast alloys. In ternary U-Mo-Al diffusion couples annealed at 600°C for 24 hours, the interdiffusion microstructure consisted of finely dispersed UAl3, UAl4, U6Mo4Al43, and UMo2Al20 phases while the average composition throughout the interdiffusion zone remained constant at approximately 80 at.% Al. The interdiffusion microstructures observed by EPMA, SEM and TEM analyses were correlated to explain the observed morphological development in the interdiffusion zones. The concept of thermodynamic degrees of freedom was used to justify that, although deviations are apparent, the interdiffusion zones did not significantly deviate from an equilibrium condition in order for the observed microstructures to develop. Selected diffusion couples developed periodic bands within the interdiffusion zone as sub-layers in the three-phase regions. Observation of periodic banding was utilized to augment the hypothesis that internal stresses play a significant role in the phase development and evolution of U-Mo vs. pure Al diffusion couples. The addition of Si (up to 5 wt.%) to the Al significantly reduced the growth rate of the interdiffusion zone. The constituent phases and composition within the interdiffusion zone were also modified. When Si was present in the Al terminal alloys, the interdiffusion zones developed layered morphologies with fine distributions of the (U,Mo)(Al,Si)3 and UMo2Al20 phases. The U6Mo4Al43 phase was observed scarcely in Si depleted regions within the interdiffusion zone. The phase development and evolution of the interdiffusion zone was described in terms of thermodynamic degrees of freedom with minimal deviations from equilibrium.
Show less - Date Issued
- 2011
- Identifier
- CFE0003747, ucf:48778
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003747
- Title
- A mathematical model for feral cat ecology with application to disease.
- Creator
-
Sharpe, Jeff, Nevai, A, Shuai, Zhisheng, Qi, Yuanwei, Quintana-Ascencio, Pedro, University of Central Florida
- Abstract / Description
-
We formulate and analyze a mathematical model for feral cats living in an isolated colony. The model contains compartments for kittens, adult females and adult males. Kittens are born at a rate proportional to the population of adult females and mature at equal rates into adult females and adult males. Adults compete with each other in a manner analogous to Lotka-Volterra competition. This competition comes in four forms, classified by gender. Native house cats, and their effects are also...
Show moreWe formulate and analyze a mathematical model for feral cats living in an isolated colony. The model contains compartments for kittens, adult females and adult males. Kittens are born at a rate proportional to the population of adult females and mature at equal rates into adult females and adult males. Adults compete with each other in a manner analogous to Lotka-Volterra competition. This competition comes in four forms, classified by gender. Native house cats, and their effects are also considered, including additional competition and abandonment into the feral population. Control measures are also modeled in the form of per-capita removal rates. We compute the net reproduction number (R_0) for the colony and consider its influence. In the absence of abandonment, if R_0(>)1, the population always persists at a positive equilibrium and if R_0 (<)= 1, the population always tends toward local extinction. This work will be referred to as the core model.The model is then expanded to include a set of colonies (patches) such as those in the core model (this time neglecting the effect of abandonment). Adult females and kittens remain in their native patch while adult males spend a fixed proportion of their time in each patch. Adult females experience competition from both the adult females living in the same patch as well as the visiting adult males. The proportion of adult males in patch j suffer competition from both adult females resident to that patch as well the proportion of adult males also in the patch. We formulate a net reproduction number for each patch (a patch reproduction number) R_j. If R_j(>)1 for at least one patch, then the collective population always persists at some nontrivial (but possibly semitrivial) steady state. We consider the number of possible steady states and their properties. This work will be referred to as the patch model.Finally, the core model is expanded to include the introduction of the feline leukemia virus. Since this disease has many modes of transmission, each of which depends on the host's gender and life-stage, we regard this as a model disease. A basic reproduction number R_0 for the disease is defined and analyzed. Vaccination terms are included and their role in disease propagation is analyzed. Necessary and sufficient conditions are given under which the disease-free equilibrium is stable.
Show less - Date Issued
- 2016
- Identifier
- CFE0006502, ucf:51389
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006502
- Title
- A NEW PARADIGM OF MODELING WATERSHED WATER QUALITY.
- Creator
-
Zhang, Fan, Yeh, Gour-Tsyh, University of Central Florida
- Abstract / Description
-
Accurate models to reliably predict sediment and chemical transport in watershed water systems enhance the ability of environmental scientists, engineers and decision makers to analyze the impact of contamination problems and to evaluate the efficacy of alternative remediation techniques and management strategies prior to incurring expense in the field. This dissertation presents the conceptual and mathematical development of a general numerical model simulating (1) sediment and reactive...
Show moreAccurate models to reliably predict sediment and chemical transport in watershed water systems enhance the ability of environmental scientists, engineers and decision makers to analyze the impact of contamination problems and to evaluate the efficacy of alternative remediation techniques and management strategies prior to incurring expense in the field. This dissertation presents the conceptual and mathematical development of a general numerical model simulating (1) sediment and reactive chemical transport in river/stream networks of watershed systems; (2) sediment and reactive chemical transport in overland shallow water of watershed systems; and (3) reactive chemical transport in three-dimensional subsurface systems. Through the decomposition of the system of species transport equations via Gauss-Jordan column reduction of the reaction network, fast reactions and slow reactions are decoupled, which enables robust numerical integrations. Species reactive transport equations are transformed into two sets: nonlinear algebraic equations representing equilibrium reactions and transport equations of kinetic-variables in terms of kinetically controlled reaction rates. As a result, the model uses kinetic-variables instead of biogeochemical species as primary dependent variables, which reduces the number of transport equations and simplifies reaction terms in these equations. For each time step, we first solve the advective-dispersive transport of kinetic-variables. We then solve the reactive chemical system node by node to yield concentrations of all species. In order to obtain accurate, efficient and robust computations, five numerical options are provided to solve the advective-dispersive transport equations; and three coupling strategies are given to deal with the reactive chemistry. Verification examples are compared with analytical solutions to demonstrate the numerical accuracy of the code and to emphasize the need of implementing various numerical options and coupling strategies to deal with different types of problems for different application circumstances. Validation examples are presented to evaluate the ability of the model to replicate behavior observed in real systems. Hypothetical examples with complex reaction networks are employed to demonstrate the design capability of the model to handle field-scale problems involving both kinetic and equilibrium reactions. The deficiency of current practices in the water quality modeling is discussed and potential improvements over current practices using this model are addressed.
Show less - Date Issued
- 2005
- Identifier
- CFE0000448, ucf:46405
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000448
- Title
- An Integrated Hydrodynamic-Marsh Model with Applications in Fluvial, Marine, and Mixed Estuarine Systems.
- Creator
-
Alizad, Karim, Hagen, Scott, Medeiros, Stephen, Wang, Dingbao, Weishampel, John, University of Central Florida
- Abstract / Description
-
Coastal wetlands experience fluctuating productivity when subjected to various stressors. One of the most impactful stressors is sea level rise (SLR) associated with global warming. Research has shown that under SLR, salt marshes may not have time to establish an equilibrium with sea level and may migrate landward or become open water. Salt marsh systems play an important role in the coastal ecosystem by providing intertidal habitats and food for birds, fish, crabs, mussels, and other animals...
Show moreCoastal wetlands experience fluctuating productivity when subjected to various stressors. One of the most impactful stressors is sea level rise (SLR) associated with global warming. Research has shown that under SLR, salt marshes may not have time to establish an equilibrium with sea level and may migrate landward or become open water. Salt marsh systems play an important role in the coastal ecosystem by providing intertidal habitats and food for birds, fish, crabs, mussels, and other animals. They also protect shorelines by dissipating flow and damping wave energy through an increase in drag forces. Due to the serious consequences of losing coastal wetlands, evaluating the potential future changes in their structure and distribution is necessary in order for coastal resource managers to make informed decisions. The objective of this study was to develop a spatially-explicit model by connecting a hydrodynamic model and a parametric marsh model and using it to assess the dynamic effects of SLR on salt marsh systems within three National Estuarine Research Reserves (NERRs) in the Northern Gulf of Mexico. Coastal salt marsh systems are an excellent example of complex interrelations between physics and biology, and the resulting benefits to humanity. In order to investigate salt marsh productivity under projected SLR scenarios, a depth integrated hydrodynamic model was coupled to a parametric marsh model to capture the dynamic feedback loop between physics and biology. The hydrodynamic model calculates mean high water (MHW) and mean low water (MLW) within the river and tidal creeks by harmonic analysis of computed tidal constituents. The responses of MHW and MLW to SLR are nonlinear due to localized changes in the salt marsh platform elevation and biomass productivity (which influences bottom friction). Spatially-varying MHW and MLW are utilized in a two-dimensional application of the parametric Marsh Equilibrium Model to capture the effects of the hydrodynamics on biomass productivity and salt marsh accretion, where accretion rates are dependent on the spatial distribution of sediment deposition in the marsh. This model accounts both organic (decomposition of in-situ biomass) and inorganic (allochthonous) marsh platform accretion and the effects of spatial and temporal biomass density changes on tidal flows. The coupled hydro-marsh model, herein referred to as HYDRO-MEM, leverages an optimized coupling time step at which the two models exchange information and update the solution to capture the system's response to projected linear and non-linear SLR rates.Including accurate marsh table elevations into the model is crucial to obtain meaningful biomass productivity projections. A lidar-derived Digital Elevation Model (DEM) was corrected by incorporating Real Time Kinematic (RTK) surveying elevation data. Additionally, salt marshes continually adapt in an effort to reach an equilibrium within the ideal range of relative SLR and depth of inundation. The inputs to the model, specifically topography and bottom roughness coefficient, are updated using the biomass productivity results at each coupling time step to capture the interaction between the marsh and hydrodynamic models.The coupled model was tested and validated in the Timucuan marsh system, located in northeastern Florida by computing projected biomass productivity and marsh platform elevation under two SLR scenarios. The HYDRO-MEM model coupling protocol was assessed using a sensitivity study of the influence of coupling time step on the biomass productivity results with a comparison to results generated using the MEM approach only. Subsequently, the dynamic effects of SLR were investigated on salt marsh productivity within the three National Estuarine Research Reserves (NERRs) (Apalachicola, FL, Grand Bay, MS, and Weeks Bay, AL) in the Northern Gulf of Mexico (NGOM). These three NERRS are fluvial, marine and mixed estuarine systems, respectively. Each NERR has its own unique characteristics that influence the salt marsh ecosystems. The HYDRO-MEM model was used to assess the effects of four projections of low (0.2 m), intermediate-low (0.5 m), intermediate-high (1.2 m) and high (2.0 m) SLR on salt marsh productivity for the year 2100 for the fluvial dominated Apalachicola estuary, the marine dominated Grand Bay estuary, and the mixed Weeks Bay estuary. The results showed increased productivity under the low SLR scenario and decreased productivity under the intermediate-low, intermediate-high, and high SLR. In the intermediate-high and high SLR scenarios, most of the salt marshes drowned (converted to open water) or migrated to higher topography. These research presented herein advanced the spatial modeling and understanding of dynamic SLR effects on coastal wetland vulnerability. This tool can be used in any estuarine system to project salt marsh productivity and accretion under sea level change scenarios to better predict possible responses to projected SLR scenarios. The findings are not only beneficial to the scientific community, but also are useful to restoration, planning, and monitoring activities in the NERRs. Finally, the research outcomes can help policy makers and coastal managers to choose suitable approaches to meet the specific needs and address the vulnerabilities of these three estuaries, as well as other wetland systems in the NGOM and marsh systems anywhere in the world.
Show less - Date Issued
- 2016
- Identifier
- CFE0006523, ucf:51360
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006523